
Generalized additive models to predict adult and young brown trout (Salmo trutta
Linnaeus, 1758) densities in Mediterranean rivers

By J. D. Alcaraz-Hern�andez1, R. Mu~noz-Mas1, F. Mart�ınez-Capel1, V. Gar�ofano-G�omez1,2,3 and P. Vezza1,4

1Institut d’Investigaci�o per a la Gesti�o Integrada de Zones Costaneres (IGIC), Universitat Polit�ecnica de Val�encia, Val�encia,
Spain; 2Universit�e Clermont Auvergne, Universit�e Blaise Pascal, GEOLAB, Clermont-Ferrand, France; 3Laboratoire de
g�eographie physique et environnementale, CNRS, UMR 6042, GEOLAB, Clermont-Ferrand, France; 4International Centre for
Ecohydraulics Research (ICER), University of Southampton, University Rd, Southampton, UK

Summary

Habitat suitability models (HSM) are concerned with the

abundance or distribution of species as a consequence of
interactions with the physical environment. Generalized
Additive Models (GAMs) were used to model brown trout
(Salmo trutta L.) density as a function of environmental vari-

ables at the scale of river reach and hydromorphological
units (HMU) in the J�ucar River Basin (Eastern Spain). After
4 years of observations (2003–2006) the data representing

trout density were split into two categories, young (<2 years)
and adult (≥2 years), for modelling independently. The envi-
ronmental descriptors at reach–scale described the geographi-

cal position, hydrological conditions, proportions and
diversity of habitats. At the scale of HMUs (pool, glide, riffle
or rapid), habitat descriptors representing dimensions, sub-

strate, cover and velocity were used. The best and parsimo-
nious GAM for each category was selected after a
comprehensive trial of all possible combinations of input
variables. The models explained 61% (adult) and 75%

(young) of the variability of the data (R2adj). The results
demonstrated the relevance of mean width, mean depth,
cover index, mean velocity and slope for adult brown trout.

Young trout densities were mainly related to maximum
depths, cover index, mean velocity, elevation, average dis-
tance between rapids and number of slow water HMUs. This

article shows the relevance of considering geographical and
habitat-related requirements at different scales to describe the
patterns of trout density. Furthermore, the importance of

considering non-linear relationships with habitat variables
was demonstrated. The results are useful for environmental
managers to design effective and science-based restoration
measures, and result in a more efficient management of

brown trout populations.

Introduction

Over the past decades, ecological models have been applied
increasingly to guide conservation and management decisions

related to fish species. Models range from individual to popu-
lation levels and cover diverse aspects such as age structure of
the populations, natural and fishing mortality, size of the
spawning stock biomass and recruitment patterns as well as

growth rate, gene flow, habitat quality and spatial distribution

patterns (for a synthesis on ecological modelling literature in
stream fish, see Frank et al., 2011). Among the diversity of
approaches, habitat suitability models (HSM) are statistical
models included within the species distribution models that

analyse the relationships between species and their habitats.
Studies of fish habitat selection have been extended to the pre-
diction of distribution and abundance (annual summer densi-

ties estimated for each age class), in order to understand how
they are influenced by the spatiotemporal habitat heterogene-
ity (Lob�on-Cervi�a, 2007; Ayll�on et al., 2013). HSM have used

hydraulic variables (e.g. velocity, depth, substrate) measured
at different spatial scales. Commonly used scales include
micro, meso and macro-scale which correspond to approxi-

mately one or a few squared meters, tens of meters, or an
entire catchment area, respectively (Bovee et al., 1998).
Initially, HSM for fish were developed at the micro-scale,

using an univariate approach based on the relationship

between a single variable and its suitability (Bovee, 1982;
Bovee et al., 1998). The most common variables were not only
hydraulic but also cover (e.g. vegetation, undercut banks or

log jams). These particular variables were demonstrated to be
relevant for fish habitat selection and densities (Bovee, 1986;
Gibson, 1993), especially for salmonid fish but also for cypri-

nids (Grossman and De Sostoa, 1994; Mart�ınez-Capel et al.,
2009). There are several methods to generate habitat suitabil-
ity indices for a single variable, but the continuous univariate
habitat suitability curves are by far the most common

approach in studies involving the physical habitat simulation
(Payne and Allen, 2009). However, several authors have sug-
gested that considering each variable independently may be

questionable, because it could induce a bias as a result of over-
looking possible interactions between variables (Orth and
Maughan, 1982; Lambert and Hanson, 1989). To deal with

this limitation, the multivariate approach has increased in
popularity among researchers (De Pauw et al., 2006). Also, a
wide array of techniques have been applied in micro-scale

habitat suitability models, such as Logistic Regression (Hayes
and Jowett, 1994), Artificial Neural Networks (Brosse and
Lek, 2000) and Fuzzy Logic (Mu~noz-Mas et al., 2012). In
many cases the distribution of the environmental variables

violates the assumptions of normality, linearity, independence
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and homoscedasticity, typical of the popular linear regressions
models. Therefore, models that incorporate non-linear beha-
viours could be more advisable and more realistic for many
applications (Venables and Dichmont, 2004). The develop-

ment of advanced techniques in the machine-learning area has
allowed the creation of predictive models with the ability to
identify non-linear relationships and greater power for

explaining and predicting ecological patterns (Olden et al.,
2008; Olaya-Mar�ın et al., 2012).
On a larger scale, macro-scale HSM analyse the abiotic

factors controlling the spatial patterns of species distributions
in river networks, catchments or river basins. This approach
has been successfully applied using several techniques,

including Generalized Linear Models (Anlauf et al., 2011),
Multivariate Adaptive Regression Splines (Leathwick et al.,
2005) and Artificial Neural Networks (Olaya-Mar�ın et al.,
2012). These studies combined variables derived from several

sources and applied different techniques to reveal potentially
suitable areas for the target species (Fukuda et al., 2013).
However, some evidence suggests that the consideration of

micro and macro-scale variables in independent studies is not
enough to cover all variabilities involving the prediction of
fish habitat suitability (Bdour et al., 2004). Additionally,

models based on multiple spatial scales usually outperform
single-scale analyses (Olden et al., 2006).
A promising approach is therefore the development of

cross-scale models including the meso-scale as a relevant

component. In modelling fish species distribution, the meso-
scale resolution can be used to capture the confounded effect
of biotic and abiotic environmental variables (Vezza et al.,

2012) by focusing on the interaction of aquatic species with
the spatial arrangement of habitat variables (Addicott et al.,
1987). This approach can rely on the concept of Functional

Habitat developed by Kemp et al. (1999). The meso-scale
was shown to perform well in describing the relationship
between fish species distribution or densities and habitat fea-

tures, such as cover or migration barriers (Fausch et al.,
2002; Costa et al., 2012). More recent studies have demon-
strated the value of cross-scale investigations in linking fish
ecology, flow and physical habitat variability but considering

the meso-scale as the central frame (Gosselin et al., 2010;
Gosselin et al., 2012).
Some of the aforementioned approaches have been applied

to model the distribution of salmonids involving several tech-
niques and scales. In the context of Mediterranean rivers at
the microhabitat scale, the variables of mean velocity, depth

and substrate have been evaluated for the establishment of
habitat suitability curves (Ayll�on et al., 2009; Mu~noz-Mas
et al., 2012). At the macrohabitat level, Filipe et al. (2013)
forecasted distribution shifts of brown trout in Pyrenean riv-

ers based on environmental predictor variables, such as mean
annual temperature and precipitation. At a mesohabitat
scale, habitat suitability criteria for mean velocity, depth,

substrate and cover have been developed on data collected
by HMU (Gort�azar et al., 2011; Mouton et al., 2011).
Herein, we present HSM for brown trout, Salmo trutta, in

four rivers of Eastern Spain. The ecological importance of
these native trout populations lies in their adaptation to
Mediterranean conditions. These conditions are characterized

by the marked seasonality in climate events, intermittent
periods of torrential rains and droughts, and high inter and
intra-annual flow variation (Gasith and Resh, 1999; Baeza
et al., 2005). In the long term these populations are declining

because of habitat degradation, flow regulation, river pollu-
tion, overfishing, inter-specific competition with exotic spe-
cies, and introduction of foreign trout genes as a result of

stocking (Almod�ovar et al., 2006; S�anchez-Montoya et al.,
2009; Maceda-Veiga, 2013). Furthermore, studies on
Mediterranean brown trout demonstrate a lack of informa-

tion on the regional patterns in the habitat selection as well
as the structure, distribution and abundance of their popula-
tions (Alcaraz-Hern�andez et al., 2007), all influenced by a

large number of environmental factors. Some of those factors
are the geological history of the area (Machordom et al.,
2000), habitat availability (Rinc�on and Lob�on-Cervi�a, 1993;
Ayll�on et al., 2009), hydrological variability (Lob�on-Cervi�a,
2009; Nicola et al., 2009), accessibility and availability of
food (S�anchez-Hern�andez et al., 2011a), global warming
(Almod�ovar et al., 2012), and intra or inter-specific relation-

ships (S�anchez-Hern�andez and Cobo, 2012).
In four Mediterranean rivers diverse variables in the physi-

cal habitat at different scales were considered to predict the

abundance of native brown trout. The objectives of this
research were to: (i) generate predictive Generalized Additive
Models for brown trout density in two age-groups, indepen-
dently; (ii) investigate the main factors of the physical habitat

which control trout density at the reach scale and meso-scale
in Mediterranean rivers; and (iii) compare the performance
of Generalized Linear Models and Generalized Additive

Models in the modelling of trout density.

Materials and methods

Study area

Field surveys were carried out in summer from 2003 to 2006
in four Mediterranean rivers (Ebr�on, Vallanca, Villahermosa

and Palancia) of the J�ucar River Basin District. All four are
within the Valencian Region (Eastern Spain), where brown
trout populations are resident and dominant in the fish com-
munity (Fig. 1). The study sites were located in unregulated

sections of the headwaters (elevations >600 m above sea
level) with a Strahler order of 2–3. Catchment areas ranged
from 123 to 268 km2 and were dominated by carbonated

rocks (pH of 7.9 � 0.2), favouring the aggregation of the
substrate particles and producing an appreciable carbonate
layer in some reaches.

The climate is typically Mediterranean, with rainfall con-
centrated at the end of winter and the beginning of spring,
resulting in low flows during the summer. The largest inter-

annual variation is in January and March. The average
annual rainfall varies slightly between 442 mm and 583 mm.
However, mean annual flows vary from 0.26 to 1.13 m3 s�1.
The mean annual water temperature is very homogeneous in

the four rivers. Water temperature oscillates between 12 and
14°C in winter, with minimum temperatures usually >5°C,
while in summer maximum temperatures usually do not

exceed 20°C. The selected reaches are mountainous, with
small average width (2.51–5.66 m), average depth (0.26–
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0.49 m) and high average slope (23.0–13.6 m km�1). Detailed
environmental descriptions of the reaches are included in
Alcaraz-Hern�andez et al. (2011) and Mouton et al. (2011).

Study design

Four reaches were selected in each river where brown trout

are usually present. Data from two reaches were collected in
each of the Ebr�on, Vallanca and Villahermosa rivers during
the first year (2003), whereas four reaches were surveyed in

each of the four rivers during the years that followed (2004–
2006). Years 2005 and 2006 suffered intense drought, where
a few of the headwater reaches in the Vallanca and Villaher-

mosa rivers were dry, thus no surveys took place (empty
spaces in Table 3 for 2005 and 2006).

Habitat data acquisition

Some 23 environmental variables were collected and used in
the development of density models for brown trout, Salmo

trutta (Table 1). The environmental variables corresponded
to different spatial scales: the reach-scale and HMU or meso-
scale. Reach-scale variables included elevation above sea

level (ELE, m) and mean slope of the study reach (SLO, m
m�1), measured using a geographic information system (Arc-
GISTM 9.3.1). The spring (FSP, m3 s�1) and annual (FAN,

m3 s�1) flows were provided by the J�ucar River Basin
Authority. HMU data were assessed in each reach using an
adapted version of the BVET (Hankin and Reeves, 1988;
Dolloff et al., 1993). Firstly, each reach was stratified visually

according to its different biotopes, mesohabitats, or HMUs
using the BVET protocol. Measurement of their main physi-
cal characteristics such as length, width, depth and substrate

(instead of a visual estimation) allowed their classification
into four types: pool, glide, riffle and rapid (Alcaraz-Hern�an-
dez et al., 2011). These characteristics were quantified in

reaches 300 m long. In this sense, several authors have rec-
ommended a similar sampling site length for habitat charac-
terization (Leopold et al., 1964; Meador et al., 1993). These

data were used to obtain other variables such as the number
of slow (NSL, slow habitats m�1; i.e. pool and glide) and
fast HMU (NFA, fast habitats m�1; i.e. riffle and rapid).
The diversity of habitat types was calculated using the

Shannon-Weaver index (DIV, 0–1) and the average distance
between rapids (DBR, m) or average length between pairs of
consecutive fast HMU were also considered.

Fig. 1. Study area: Ebr�on (EB),
Vallanca (VA), Palancia (PA) and
Villahermosa (VI) rivers, within the
J�ucar River Basin District (Eastern
Spain). Sites were in unregulated
sections of the headwaters. Elevations
at each site (from 1 to 4): 880, 792,
763 and 743 m.a.s.l. in the EB; 968,
890, 752 and 718 m.a.s.l. in the VA;
769, 688, 655 and 627 m.a.s.l. in the
PA, and 728, 647, 621 and
605 m.a.s.l. in the VI. Catchment
areas ranged from 123 to 268 km2

Table 1
Description of variables assessed at reach scale and meso-scale (hy-
dromorphological units, HMU), Ebr�on, Vallanca, Palancia and Vil-
lahermosa rivers (J�ucar River Basin District, Eastern Spain)

Spatial
scale Variable Code Description (units)

Reach Altitude ELE Elevation above sea level (m)
Slope SLO Mean slope of the study reach

(m m�1)
Spring flow FSP Mean spring flow rate (m3 s�1)
Annual flow FAN Mean annual flow rate

(m3 s�1)
Number of slow
habitats

NSL Number of slow habitats in
the reach (slow habitats m�1)

Number of fast
habitats

NFA Number of fast habitats in the
reach (fast habitats m�1)

Diversity habitat
index

DIV Shannon-Weaver diversity
index of habitat types (0–1)

Distance
between rapids

DBR Average distance between
rapids (m)

HMU Mean length LEN Mean length of surface water
of the HMU (m)

Mean width WID Mean width of surface water
of the HMU (m)

Mean depth DME Mean depth of the HMU (m)
Maximum depth DMA Maximum depth of the HMU

(m)
Area ARE Area of each HMU (m2)
Volume VOL Volume of the HMU (m3)
Shading SHA Shading over the HMU (%)
Embeddedness FCO Riverbed covered by fine

materials (%)
Coarse substrate SCO Coarse substrate, diameter

>256 mm (%)
Medium
substrate

SME Medium substrate, diameter
2–256 mm (%)

Fine substrate SFI Fine substrate, diameter
<2 mm (%)

Substrate index SIN Substrate index (3, sand; 8,
bed rock)

Velocity VEL Velocity of the HMU (m s�1)
Woody debris WOD Amount of woody debris on

the reach (woody m�1)
Cover index CIN Refuge index (0, no refuge; 10,

excellent)
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The main physical characteristics of each HMU were mea-
sured each year at each site: Mean length of the HMU
(LEN, m) with a measuring tape; mean width of water sur-
face (WID, m) from three cross-sections corresponding to ¼,

½, and ¾ of the total length of the HMU; mean depth
(DME, m) was calculated from nine points corresponding to
measurements taken at each cross-section where width was

estimated, and maximum depth (DMA, m) was measured in
the corresponding point. These measurements were used to
calculate the area of HMU (ARE, m2) by simplifying its cal-

culation as the product of length and width. Volume of
HMU (VOL, m3) was calculated as the product of length,
width and mean depth. Other variables were visually esti-

mated. Shading was determined as the percentage cover of
shade over the channel (SHA, %). The percentage of embed-
dedness (FCO, %) and substrate (%) were divided into three
categories: coarse (SCO, ø > 256 mm), medium (SME, ø 2–
256 mm) and fine (SFI, ø < 2 mm). Substrate composition
was converted into a single substrate index (SIN) by sum-
ming weighted percentages of each substrate type (Jowett

et al., 1991). The weights were slightly modified from the
original substrate codes of the Instream Flow Incremental
Methodology (Bovee, 1982; Mouton et al., 2011) as:

SIN = 0.08 9 bedrock + 0.07 9 boulder + 0.06 9 cobble
+ 0.05 9 gravel + 0.04 9 fine gravel + 0.03 9 sand. In addi-
tion, mean velocity in the HMU (VEL, m s�1) was calculated
by dividing the gauged flow and the mean cross-section area.

Density of woody debris (WOD, pieces of wood per m2) and
cover index (CIN, from 0 – no refuge to 10 – excellent) by
Garc�ıa de Jal�on and Schmidt (1995) were determined. Cover

index followed the equation:

CIN ¼ Cb þ Cs þ Csub þ Csv þ Cd

4

where, Cb is the available refuge due to the presence of
undercut banks or caves; Cs is the refuge produced by shad-
ing; Csub produced by substrate types; Csv produced by sub-
merged vegetation and Cd by the depth of the water column.

At five categories of cover, this index assigns scores from
zero to five (0 no refuge, and five maximum score) using the
recommendations in Table 2. A total of 93 HMU were sam-

pled, with fifty corresponding to slow water HMU (pools
and glides) and 43 to fast water HMU (riffles and rapids).

Biological data acquisition

During the summers of 2003–2006, the biological survey
took place by electrofishing in each of the selected HMU,

one fast and one slow. The electrofishing equipment con-
sisted of a 950 W electric generator connected to an electric
rectifier for a continuous current and to select the appropri-

ate voltage. Each HMU was surveyed at least three times
without replacement, after placing nets at both extremes of
the HMU. The number of captures in each of the indepen-

dent size classes (see below) was divided by the sampling
area, which ranged from 11 to 399 m2.
Fork length (mm) and weight (g) of each individual were

measured. In addition, scales were extracted from individuals

older than 1 year to verify the longitudinal-age classification
and the length–frequency analysis of the captured fish. Two
independent scale readers analysed the age and in case of

unclear scales, the fish was discarded. Trout densities (trout
m�2) were calculated using the weighted maximum likelihood
of Carle and Strub (1978) and divided into young (DYO,

<2 years) and adult (DAD, ≥2 year) for the data analyses. Age
classes 0+ and 1+ were classified into the same category (DYO,
<2 years) because they had disappeared from some reaches as

a consequence of extreme events (floods and droughts) that
occurred during the years of the study. Therefore, the data cor-
responding to fry and juvenile brown trout included more
zeros than expected. Zero inflated databases can lead to some

problems. Firstly, the estimated parameters and standard
errors may be biased. Secondly, the excessive number of zeros
can cause over-dispersion in the statistical GAMs analyses

(Zuur et al., 2009). The values of young and adult brown trout
densities by river, reach, HMU and year are shown in Table 3.

Data analysis

Generalized Additive Models (GAMs) were used to model

brown trout density, as they are useful in dealing with non-
linear relationships between species abundance and environ-
mental variables. Additionally, the models are additive,
hence they can examine the effect of several independent

variables on the dependent variable (James et al., 2013).
GAMs have shown an acceptable or good performances in
modelling habitat: fish relationships at the meso-scale (Costa

et al., 2012). Furthermore, this technique allows the modeller
to include normal and non-normal variables in the model.
GAMs follow the equation:

EðyÞ ¼ b0 þ s1ðx1Þ þ s2ðx2Þ þ s3ðx3Þ þ . . .

where y represents the response variable, b0 the constant

parameter of the model, s1, s2 and s3 the smoothing func-
tions, and x1, x2 and x3 the predictive variables (Wood,
2001). This model adjusts a response to the aggregation of

each variable modelled through the application of multiple
constrained splines, providing a smooth response according

Table 2
Scores of the cover index (CIN) based on availability of different
cover types: bank shelter (Cb), shading (Cs), riverbed substrate
(Csub), submerged vegetation (Csv), depth (Cd)

Score Cb

Cs

(%) Csub

Csv
(%)

Cd

(cm)

0 None 0 Rock
surface

None <15

1 Aerial undercut
bank

<10 Sand <1 15–50

2 Submerged
undercut

10–25 Fine gravel 1–5 50–80

3 Deep submerged
undercut

25–50 Gravel 5–15 80–100

4 Riparian roots 50–75 Cobbles 15–30 100–150
5 Deep undercut

and roots
>75 Boulder >30 >150
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to each variable involved. Therefore, the non-parametric
transformation of the predictive variables was implemented
using a smoothing function. The choice of the degrees of

freedom of the smoothing function (e.d.f.) was carried out
by applying a penalized spline regression (Wood, 2006).
A pre-processing procedure of the entire database was exe-

cuted in order to discard correlations and collinearity among
variables in the models, according to Zuur et al. (2009).
Firstly, all combinations of variables were generated (of 2, 3,
4 variables, etc.) and the combinations where any relevant

Spearman’s Rho was observed in pairs (q > 0.5) were dis-
carded for the modelling. In addition, the Variance Inflation
Factor (VIF) was used to check collinearities among the pre-

dictive variables, and variables with VIF > 5 were discarded
(Zuur et al., 2009). Finally, to select the variables involved in
the generation of the GAM, young and adult brown trout

regression models were iteratively calculated by trying all
possible combinations of datasets including variables in dif-
ferent sets, comprising two to eight variables. Each combina-
tion met the aforementioned requirements (non-correlation

and non-collinearity of variables).
Among the function families tested, the quasipoisson dis-

tribution function was selected for modelling trout density

and an offset was introduced (offset = Log ARE) in accor-
dance with other studies with a similar modelling procedure

(Nislow et al., 2011). The number of knots in the splines was
limited to four. The signification of the F-test was used to
discard any combination where any of the variables did not

have a signification smaller than 0.1. None of the variables
was transformed for the modelling process.
The R2-adjusted (hereafter R2adj) was the performance

criterion selected to choose the best model with the least
number of variables (Aertsen et al., 2010). The model with
the best performance from each iteration was then the final
selection; in this case, the model with the largest R2adj for

each number of variables was retained. The selection of the
final model was based on the marginal improvement ratio
of the R2adj. No more variables were added when the mar-

ginal improvement ratio of R2adj was <10%. There are
other statistics to select the subsets of predictors in order to
improve prediction accuracy and model interpretability,

such as Cp, AIC or BIC. These three and R2adj are based
on penalizing the residual square sum by the number of
observations and predictor variables. The statistics R2adj,
Cp, AIC and BIC are reliable in scenarios where the sam-

ple size is very large and their results are asymptotic (James
et al., 2013). In this study the sample size was relatively
small, but as the asymptote of R2adj is always 1, it was

decided to use R2adj. In addition, Generalized Cross Vali-
dation score (GCV), visual inspection of the response of

Table 3
Young (DYO) and adult (DAD) brown trout Salmo trutta densities (trout m�2) recorded by river reach, hydromorphological unit (HMU)
simplified as fast or slow, and year of sampling

River Reach HMU

2003 2004 2005 2006

DYO DAD DYO DAD DYO DAD DYO DAD

Ebr�on 1 Fast 0.000 0.010 0.000 0.000 0.000 0.007 0.022 0.000
1 Slow 0.035 0.013 0.006 0.000 0.019 0.010 0.010 0.010
2 Fast – – 0.031 0.000 0.055 0.000 0.046 0.009
2 Slow – – 0.011 0.000 0.045 0.006 0.028 0.022
3 Fast – – 0.018 0.023 0.226 0.016 0.080 0.101
3 Slow – – 0.017 0.063 0.122 0.041 0.036 0.051
4 Fast 0.016 0.000 0.000 0.000 0.043 0.000 0.032 0.000
4 Slow 0.014 0.057 0.014 0.000 0.060 0.000 0.000 0.000

Vallanca 1 Fast – – 0.541 0.000 0.000 0.000 0.000 0.000
1 Slow – – 0.237 0.086 0.000 0.000 0.000 0.000
2 Fast – – 0.196 0.071 0.549 0.000 0.068 0.000
2 Slow – – 0.133 0.111 0.461 0.194 0.153 0.017
3 Fast 0.060 0.012 0.068 0.011 0.505 0.031 0.195 0.020
3 Slow 0.030 0.005 0.028 0.057 0.335 0.010 0.213 0.015
4 Fast 0.092 0.092 0.075 0.030 – – – –
4 Slow 0.063 0.094 0.065 0.131 0.589 0.109 0.817 0.136

Palancia 1 Slow – – 0.000 0.000 0.000 0.000 0.000 0.000
2 Fast – – 0.000 0.006 0.013 0.000 0.007 0.000
2 Slow – – 0.000 0.010 0.021 0.017 0.022 0.004
3 Fast – – 0.014 0.000 0.185 0.007 0.014 0.007
3 Slow – – 0.007 0.013 0.066 0.019 0.000 0.030
4 Fast – – 0.021 0.000 0.000 0.017 0.034 0.000
4 Slow – – 0.000 0.000 0.008 0.008 0.000 0.000

Villahermosa 1 Fast – – 0.005 0.005 – – – –
1 Slow 0.024 0.000 0.000 0.007 – – – –
2 Fast – – 0.018 0.012 – – – –
2 Slow – – 0.000 0.062 – – – –
3 Fast – – 0.260 0.023 0.223 0.039 0.138 0.000
3 Slow – – 0.052 0.071 0.143 0.075 0.101 0.060
4 Fast – – 0.037 0.008 0.136 0.010 0.108 0.000
4 Slow 0.073 0.030 0.022 0.067 0.029 0.066 0.036 0.027
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each variable and its error distribution were considered in
the selection of the best GAMs (Wood, 2006; Pierce et al.,
2007). The residuals were plotted against the predictive
variables to investigate the violation of the assumption of

independence.
Finally, generalized linear models (GLMs) were calculated,

with the same procedure used to generate the GAMs. Specifi-

cally, the models were generated with each of all possible
combinations of variables, with similar requirements (non-
correlation and non-collinearity), using the same function

family and the same performance criterion R2adj. The entire
process was carried out with the GAM and GLM functions
of the packages mgcv (Wood, 2006) and stats developed in R

2.15 for Windows (R Development Core Team, 2010).
The models were generated for the entire data set includ-

ing all four rivers, as the data collection covered a relatively
small area in the headwaters of the J�ucar River Basin Dis-

trict, and multi-site models are very interesting for support-
ing habitat management and river restoration (Lamouroux
et al., 1999). Previous studies have demonstrated that multi-

site or regional models do not necessarily reflect broad
ranges of suitable conditions (Lamouroux et al., 1999). Sev-
eral studies have succeeded in developing regional models

(Hayes and Jowett, 1994; Lamouroux et al., 1999; Nyk€anen
and Huusko, 2004). However, several models at catchment
scale showed transfer difficulties, questioning its generaliza-
tion ability (Fukuda, 2010). Due to the multiple factors

affecting fish habitat selection, generally recommended is the
generation of site-specific models of habitat suitability, espe-
cially for the application of physical habitat modelling and

environmental flow assessments (Moyle and Baltz, 1985;
Bovee et al., 1998).

Results

The process in combining variables to generate GAMs

resulted in a total of 59 009 models for GAM as well as for
GLM: 210 composed two variables, 1149 three variables,
4009 four, 9383 five, 15 069 six, 16 667 seven and 12 522
eight variables. All of these models met the selection criteria

(non-correlation and non-collinearity among variables).
Figure 2 illustrates the R2adj of the best model at each

iteration, given the number of variables in the training data-

set for the GAM as well as for the marginal improvement
ratio. Adult density presented a monotonic increment of the
performance criteria as the number of variables included

increased. However, the young trout presented a maximum
with a decrease from the six-variable model to the seven-vari-
able model. This decrease was due to the presence of an
undesired combination of variables, as explained herein. The

seven-variable model included among others, a number of
slow (NSL) and fast (NFA) habitats, and the Shannon-Wea-
ver diversity habitat index (DIV, 0–1); this model was

rejected because the former (six-variable model) indirectly
included the concept of diversity, as it included NSL and
NFA. Therefore, the model with six variables was selected

for young Salmo trutta. For the adult trout, the 10% of mar-
ginal improvement ratio was used for final selection of the
best model with five variables. Regarding GLM, the adult

trout models showed an R2adj equal to 18% with five vari-
ables and 15% with six, whereas the models for young trout

showed an R2adj of 23% with six variables and 19% with
seven. The R2adj penalizes the number of variables, thus per-
formance reductions are possible with more variables.

The results of the best GAM (Table 4) indicated that adult
trout density was successfully explained by mean width
(WID), mean depth (DME), cover index (CIN), velocity
(VEL) and slope (SLO). The model for young trout included

maximum depth (DMA), CIN, VEL, elevation (ELE), dis-
tance between rapids (DBR) and NSL. The models for adult
and young trout density explained 61% and 75% of the vari-

ability of the data (R2adj), respectively. Both models showed
non-linear relationships with some of the explanatory vari-
ables, with effective degrees of freedom larger than 1

(e.d.f. > 1). There was a linear relationship between adult
trout density and one predictor variable (VEL) as well as
between young trout and DMA. In addition, most of the
variables were highly significant (P < 0.001), except for CIN

and VEL in the adult model and CIN in the young trout
model (Table 4). Relevant statistical differences between
GAMs and GLMs were noted. GLM models for adult and

young trout density with the same number of variables as
the GAM models, explained 18% and 23% of the data

Fig. 2. Variation of performance criterion (R2-adjusted; dots) of best
model at each iteration (bars) with increasing number of variables in
the training dataset of the Generalized Additive Model (GAM)
based on 4 years of sampling (2003–2006). Marginal improvement
ratio = marginal percentage of improvement in relation to best previ-
ous model (dots). The R2-adjusted of the best two-variable model
was used as a base value. Best model for adult trout included five
variables (mean depth, velocity, cover index, mean width and slope),
and six variables for young trout (maximum depth, velocity, cover
index, elevation, distance between rapids and number of slow habi-
tats)
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variability, respectfully. The adult model comprised the vari-

ables: mean length (LEN), WID, DME, VEL and DBR,
whereas the young model comprised WID, DME, coarse
substrate (SCO), density of woody debris (WOD), VEL and
NFA.

The partial effects of each individual predictor variable on
adult trout density (DAD) at the meso-scale (leaving other
parameters fixed) are shown in Fig. 3. DAD increased with

DME in an approximately linear fashion from 0 to 0.4 m

and decreased slowly with increasing DME, thus showing an
approx. bell-shaped effect. A less marked bell-shaped effect
was shown by CIN and SLO. DAD increased slightly with
CIN when CIN < 5 and decreased when CIN > 5. Slope

influenced DAD positively, with an optimum at 0.015 m m�1

and decreased thereafter. DAD slightly increased with SLO
when slopes were over 0.04 m m�1, presenting another peak.

However, VEL and WID demonstrated an opposite trend.
Adult density slowly decreased with VEL, decreased with
WID from 0 to 5 m approx. linearly, and remained almost

invariable for WID > 5 m.
In Fig. 4 the partial effects of young trout density (DYO)

are illustrated, where DYO decreased linearly as DMA

increased. The response demonstrated inverted s-shaped
curves for VEL and DBR, with a positive effect at low val-
ues and a central range with an invariable effect and a nega-
tive effect at higher values (over 0.8 m s�1 for VEL and

125 m for DBR). DYO was invariable with CIN from 0 to
4 points and increased slightly thereafter. A similar partial
effect was shown by ELE. Specifically, DYO exhibited simi-

lar values from 600 to 750, increasing slightly thereafter.
Alternatively, a normal distribution was observed when
DYO was plotted against NSL, with DYO increasing slowly

with low NSL values, being optimum at 0.05 and tailing off
linearly with larger NSL values. Finally, Fig. 5 depicts the
comparison between observed and predicted values of DYO
and DAD as assessed by the GAMs (using five variables for

adult trout and six variables for young trout). As depicted,
differences between observed and predicted values were
small, with Rho values of 0.89 and 0.81 for DYO and

DAD, respectively.

Table 4
Summary of best Generalized Additive Models (GAMs) for adult
and young Salmo trutta densities. Final predictive variables: mean
width (WID), mean depth (DME), cover index (CIN), mean velocity
(VEL) and slope (SLO) for adult brown trout; and maximum depth
(DMA), cover index (CIN), mean velocity (VEL), elevation (ELE),
distance between rapids (DBR) and number of slow habitats (NSL)
for young brown trout

Age
group

Predictive
variable

GAM

R2-adjusted e.d.f. P-value F

Adult WID 0.61 2.85 <0.001 42.102
DME 2.67 <0.001 7.244
CIN 2.20 0.035 3.180
VEL 1.00 0.002 9.917
SLO 2.96 <0.001 5.822

Young DMA 0.75 1.00 <0.001 17.452
CIN 2.45 0.052 4.259
VEL 2.90 <0.001 10.289
ELE 2.51 <0.001 7.506
DBR 2.83 <0.001 11.197
NSL 3.00 <0.001 21.807

Fig. 3. Partial effects of mean depth
(DME), velocity (VEL), cover index
(CIN), mean width (WID) and slope
(SLO) in adult brown trout densities
modelled using Generalized Additive
Models (GAMs) based on 4 years of
sampling (2003–2006). Solid black
line = general trend of the considered
variable effect on mean adult trout
density; shaded areas = 95%
confidential intervals. Numbers in y-
axis = effective degrees of freedom.
Black points = training data
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Discussion

The present study provides an appropriate methodology to
generate predictive fish density models with GAMs, focusing
on the best subset selection. The exhaustive selection of
variables led to the production of optimal models, with per-

formance (R2adj) of 0.61 and 0.75 for adult and young
brown trout, respectively. These values can be considered
similar to those obtained in previous studies based on multi-

variate approaches (Ayll�on et al., 2010, 2013; Vezza et al.,
2012), and equivalent or superior (specifically for young
trout) to the study performed with random forests and fuzzy

logic upon the same Valencian rivers (Mouton et al., 2011).
Although the present study selected more predictive variables
than the aforementioned studies, it is remarkable that we

dealt with a problem that is considered as a further degree in

complexity, such as fish density, whereas previous studies in
Mediterranean rivers afforded the problem of presence/ab-
sence or classification. Interest in fish density models has

recently increased because they may provide more gradual
information on species habitat selection (Fukuda et al.,
2011), thus the present approach is a step forward in the

research on Mediterranean brown trout.
To our knowledge, this is the first study generating all pos-

sible models, combining the predictor variables (from 2 to 8

variables) and analysing the best parsimonious GAM,
instead of using step-forward or step-backward algorithms of
selection variables. The comprehensive trial of all possible

combinations of input variables and selection of the best par-
simonious model after predefined criteria is the only method
guaranteed to determine the optimal set of input variables
(Bonnlander and Weigend, 1996).

The presented methodology was considered computation-
ally affordable and more systematic than previous
approaches (Tutz and Binder, 2006), because no preliminary

assumptions must be made and the systematic search pro-
vides us with the best combination of predictors for the opti-
mal model. In the future, a new sample design will be

necessary to acquire enough data to develop density models
by age classes. Another potential limitation in this study was
over-fitting, which was limited by setting a maximum of
four knots in the models due to the limited number of

observations.
Moreover, the data-driven procedure to generate GLM

resulted in models with a limited predictive power, thus other

techniques of higher complexity are recommended (e.g.
GAM). This result has been confirmed in other studies on

Fig. 4. Partial effects of maximum
depth (DMA), velocity (VEL), cover
index (CIN), elevation (ELE),
distance between rapids (DBR) and
number of slow habitats (NSL) in
young brown trout densities modelled
using Generalized Additive Models
(GAMs) based on 4 years of
sampling (2003–2006). Solid black
line = general trend of the considered
variable effect on mean young trout
density; shaded areas = 95%
confidential intervals. Numbers in y-
axis = effective degrees of freedom.
Black points = training data

(a) (b)

Fig. 5. Observed (x-axis) vs predicted (y-axis) values of adult (a)
and young (b) brown trout density by the Generalized Additive
Models (GAMs). Thick grey lines = regression line between observed
and predicted. Dotted black lines = in perfect agreement
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fish habitat requirements (Olden and Jackson, 2002;
Ahmadi-Nedushan et al., 2006; Armitage and Ober, 2010;
Vezza et al., 2014a). Indeed, GAMs are considered an
important methodological step forward in regression analyses

because they are a semi-parametric extension of GLM with
the only underlying assumption that the functions are addi-
tives and the components are smooth (Guisan et al., 2002).

Regarding our second objective, the models for adult and
young Mediterranean trout marked the importance of con-
sidering a hierarchical approach for modelling fish-habitat

relationships (Armstrong et al., 2003; Olden et al., 2006; Fer-
reira et al., 2007). A great proportion of the selected vari-
ables operate at the reach-scale (slope, elevation, distance

between rapids and number of slow habitats), especially for
young trout, but there is a considerable improvement in per-
formance with HMU variables (depth, mean velocity, cover).
Four reach-scale predictor variables were selected: Slope

was selected for the adult trout density model, whereas eleva-
tion, distance between rapids and number of slow habitats
were selected for young trout. After examining the results,

the optimal slope value for adult trout was around
0.015 m m�1, i.e. reaches characterized by a low to moderate
gradient. In accordance with these results Ayll�on et al.

(2010) and Filipe et al. (2013) found that the slope affects
the distribution of trout on a large scale. Macro-scale topo-
graphic variables were important to determine the micro-cli-
mate variability present within the study area, thus

improving the model predictions.
Elevation can be seen as a surrogate of water temperature,

which has been revealed as a key driver of young brown

trout distribution. It is expected that higher temperatures
predicted for the future would limit the fry growth (Parra
et al., 2012) and would lead headwaters to become refuge

areas for brown trout (Almod�ovar et al., 2012). Young trout
responded to the sequence of habitat units, especially with
adequate proportion of pools along the reach and short dis-

tances between rapids. The resulting partial plots indicated
an optimum degree of habitat diversity (Fig. 4). This result
supports the studies of Hauer et al. (2011) where young trout
occupied shallow pool waters and habitat types close to

rapids, finding lower velocities, higher water temperatures
and appropriate concentrations of dissolved oxygen. As trout
density depends on the HMU configuration in the river seg-

ment (i.e. proportions and sequence), density models could
improve if they were estimated upon combinations of HMU,
specifically on density data at the scale of morphologically

representative reaches. For example, the summed abundance
at different HMU weighted by habitat-specific densities
(Hankin and Reeves, 1988; Rosenfeld, 2003; Hauer et al.,
2011).

Three predictor variables were selected at meso-scale, i.e.
depth, mean velocity and cover, in accordance with previous
studies in Mediterranean rivers (Mouton et al., 2011; Vezza

et al., 2012, 2014b). Regarding water depth, Baran et al.
(1997) found a clear segregation by habitat units between fry
and adult stages of brown trout: fry were more frequently

detected in riffles and glides, and adults were concentrated in
deep-water habitats. Elso and Giller (2001) found that trout
fry utilize faster-flowing habitats rather than slower habitats

until they reach a certain size, after which they move into
pools. This behaviour can been explained by intra-specific
competition or territoriality (Elliott, 1990; Elso and Giller,
2001); the possible reduction in expended energy (low energy

swimming costs) has also been suggested (Bridcut and Giller,
1995; Railsback and Harvey, 2002).
In Northern Europe, Heggenes et al. (1999) demonstrated

that water depth is the most important habitat variable for
brown trout in small rivers, especially during low flow.
Maki-Pet€ays et al. (1997) observed that in general there is a

relationship between large salmonid fish and deep habitats,
although there are movements of fish towards shallow micro-
habitats in summer or winter, depending on habitat availabil-

ity. Regarding the observed decrease in density at large
depths (Fig. 3), this could be produced by the expected
reduction in the drift provision; upholding this premise,
microhabitat suitability modelling has recently improved with

the consideration of macroinvertebrate drift as an input vari-
able (Hauer et al., 2012).
On the contrary, mean velocity for adult trout showed a

negative linear trend (Fig. 3). For young trout there was a
negative effect at high velocity, in agreement with a previous
microhabitat study in Spain (Ayll�on et al., 2013). In compar-

ison with the adult data, the partial plot for young trout
demonstrated certain dispersion at higher velocities. The
results of the two size classes mostly concur with studies in
Mediterranean rivers where velocity curves showed an opti-

mum at low velocity and a decreasing trend (Mart�ınez-Capel
et al., 2007; Ayll�on et al., 2010; Mu~noz-Mas et al., 2012;
Ayll�on et al., 2013) but a similar discrepancy on the suitabil-

ity of the null velocity being present. This result it not sur-
prising, because trout fry consume a relevant percentage of
invertebrates living on erodible substrate (i.e. faster flowing

habitat) whereas adult trout tend to feed on prey available in
the water column (S�anchez-Hern�andez and Cobo, 2012). The
differences between age groups could mean an interaction of

velocity with other variables, e.g. substrate, because coarse
substrate may produce velocity shelters at higher velocities
and suitable niches for feeding, which can be more relevant
for fry in smaller rivers with a medium-high gradient.

The adult trout density presented a maximum positive
effect at intermediate values of cover index, decreasing where
cover is scarce or extremely abundant. However, the effect of

cover on young trout seems to be of very little importance.
Some studies at the micro-scale indicated that older trout
tend to select increasingly deeper and covered habitats to

reduce size-dependent predation risk (Ayll�on et al., 2009,
2010, 2013). However, such studies used cover as a categori-
cal variable, thus the cover index provides us with a more
gradual perspective and an integrative combination of cover

types. Our results could be the product of excessive cover,
which could make access to the best bio-energetic positions
difficult for the adult trout (S�anchez-Hern�andez et al.,

2011b).
The presented results are mostly in agreement with Mou-

ton et al. (2011), who trained two models based on fuzzy

logic and Random Forests, and selected width, cover index
and mean velocity as the most relevant variables for trout
(all ages combined). As width was inversely correlated with
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elevation, it could be considered that in general, elevation
was positively related with density. We hypothesize that the
influence of human activities is partly explanatory, because
flow regulation and river pollution increase in the down-

stream direction. Another reason can be that the limitations
in river connectivity (especially for weirs in the Vallanca
River) do not allow a good dispersion of the fish as they

grow. Therefore, the high densities in the headwaters of the
Vallanca (including very narrow reaches) may produce this
trend, which is not transferable to the majority of other trout

rivers.
This article demonstrates that modelling habitat suitability

at different scales can provide interesting insights on fish den-

sity patterns, in agreement with other authors (Bisson et al.,
2006; Mouton et al., 2011), especially when non-linear tech-
niques are applied. The modelling procedures demonstrated
that young and adult brown trout density depend on meso-

scale variables and reach-scale variables. Therefore, river
restoration actions in Mediterranean rivers should include
the assessment of river connectivity and habitat diversity to

quantify the ratio and distribution of slow and fast habitats.
In the J�ucar River Basin, the positive effect of small weir
removal has already been demonstrated (Olaya-Mar�ın et al.,

2012), as has the accessibility to lateral tributaries (and the
corresponding catchment area) in highly fragmented river
systems (Olaya-Mar�ın, 2013).
Our models provide useful information for the design of

effective restoration measures by environmental and water
managers. Models at the meso-scale allow the assessment of
habitat suitability for fish in response to flow management or

other river restoration actions. Accordingly, meso-scale mul-
tivariate models with GAM have been used in studies of eco-
hydraulics to assess environmental flows with excellent

results (Jowett and Davey, 2007; Costa et al., 2012). The
exhaustive search for the best subset of environmental pre-
dictors was a relevant aspect of the model selection, in con-

trast with previous studies. Thus, this study provides
valuable guidelines in modelling habitat requirements for
freshwater fish species as well as a better insight on habitat
suitability for brown trout in the Mediterranean context.
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