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1  | INTRODUC TION

Global climate change is expected to modify patterns of hydrological 
events in many regions of the world (Blöschl et al., 2017; Bormann 
& Pinter, 2017; Garner, Van Loon, Prudhomme, & Hannah, 2015; 
Glaser et al., 2010; Markovic, Carrizo, Kärcher, Walz, & David, 2017), 
affecting water temperature (Markovic, Scharfenberger, Schmutz, 
Pletterbauer, & Wolter, 2013; Van Vliet et al., 2013) and changing 

the temporal distribution of river flows (Blöschl et al., 2017). Since 
flow is considered a master variable shaping riverine ecosystems, 
such changes are expected to cause substantial shifts in the com‐
position of aquatic communities (Guse et al., 2015; Rolls, Heino, & 
Chessman, 2016). This could lead to massive extinctions or to the 
creation of new traits and adaptations (Myers et al., 2017).

Understanding functional relationships between flow pat‐
terns and biological consequences is of the utmost importance for 

 

Received:	13	April	2019  |  Revised:	31	July	2019  |  Accepted:	12	August	2019
DOI: 10.1111/fme.12388  

O R I G I N A L  A R T I C L E

The role of floods and droughts on riverine ecosystems under a 
changing climate

Piotr Parasiewicz1,2  |   Elise L. King3 |   J. Angus Webb3 |   Mikołaj Piniewski2 |   
Claudio Comoglio4 |   Christian Wolter5 |   Anthonie D. Buijse6 |   David Bjerklie7 |   
Paolo Vezza4 |   Andreas Melcher8 |   Katarzyna Suska1

1The	Stanisław	Sakowicz	Inland	Fisheries	
Institute, Olsztyn, Poland
2Department of Hydraulic Engineering, 
Warsaw University of Life Sciences, 
Warsaw, Poland
3Environmental Hydrology and Water 
Resources, Department of Infrastructure 
Engineering, The University of Melbourne, 
Parkville, Vic., Australia
4Department of Environment, Land and 
Infrastructure Engineering, Politecnico di 
Torino, Torino, Italy
5Leibniz‐Institute	of	Freshwater	Ecology	and	
Inland	Fisheries,	Berlin,	Germany
6Deltares, Utrecht, The Netherlands
7U.S. Geological Survey New England Water 
Science Center, East Hartford, CT, USA
8Centre for Development 
Research, University of Natural Resources 
and Life Sciences, Vienna, Austria

Correspondence
Piotr	Parasiewicz,	The	Stanisław	Sakowicz	
Inland	Fisheries	Institute,	ul.	Oczapowskiego	
10, 10‐719 Olsztyn 4, Poland.
Email: piotr@infish.com.pl

Funding information
Narodowe Centrum Nauki, Grant/Award 
Number:	2018/31/D/ST10/03817;	FP7	
Environment, Grant/Award Number: 
REFORM	282656;	European	Commission,	
Grant/Award Number: 282656

Abstract
Floods	 and	 droughts	 are	 key	 driving	 forces	 shaping	 aquatic	 ecosystems.	 Climate	
change may alter key attributes of these events and consequently health and distri‐
bution of aquatic species. Improved knowledge of biological responses to different 
types of floods and droughts in rivers should allow the better prediction of the eco‐
logical consequences of climate change‐induced flow alterations. This review high‐
lights that in unmodified ecosystems, the intensity and direction of biological impacts 
of floods and droughts vary, but the overall consequence is an increase in biological 
diversity and ecosystem health. To predict the impact of climate change, metrics that 
allow the quantitative linking of physical disturbance attributes to the directions and 
intensities of biological impacts are needed. The link between habitat change and the 
character of biological response is provided by the frequency of occurrence of the 
river wave characteristic—that is the event's predictability. The severity of impacts 
of floods is largely related to the river wave amplitude (flood magnitude), while the 
impact of droughts is related to river wavelength (drought duration).
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planning adaptation measures to climate change and for sustainable 
river management. Identifying elements of the hydrological regime 
directly responsible for shifts in community composition is neces‐
sary. Subsequently, the attributes determining the direction and 
magnitude of the shift can be identified.

It is widely recognised that extreme events such as floods 
and droughts are a major driving force behind the composition of 
aquatic biotas (Poff, 2018; Poff, Olden, Merritt, & Pepin, 2007; 
Sukhodolov, Bertoldi, Wolter, Surian, & Tubino, 2009; Wolter, Buijse, 
& Parasiewicz, 2016). However, not all floods and droughts are the 
same, and therefore, different events have different consequences. 
Knowledge of the directions and intensities of natural biological 
responses to different types of floods and droughts should allow 
improved understanding and ability to predict the consequences of 
natural and anthropogenic alterations.

To make precise predictions useful for climate adaptation plan‐
ning, it is necessary to identify the appropriate quantitative metrics 
of disturbance that correlate with biological responses. Thus, the 
role that floods and droughts play in biological cycles needs to be 
understood better. Specifically, in this review the following ques‐
tions are addressed:

• What are the functional mechanisms between physical patterns 
and biological response?

• Which attributes of floods and droughts are most closely related 
to population shaping phenomena?

• Which of these attributes are most sensitive to climate change 
effects?

While there is a substantial body of literature relating to vari‐
ous aspects of floods and droughts, the information is disjointed 
and not synthesised in a fashion that allows a full understanding of 
the driving forces and mechanisms leading to biological responses. 
Therefore, the purpose of this paper is to:

• provide a comprehensive overview of the topic based on a review 
of the recent literature;

• identify practical quantitative metrics that may be used to esti‐
mate the climate‐induced modifications of flow patterns that de‐
termine biological response.

2  | FLOODS AND DROUGHTS A S 
ECOLOGIC AL DISTURBANCE PROCESSES

For	the	ecology	of	a	system,	floods	and	droughts	are	considered	physi‐
cal disturbances, that is stochastic events forcing normal system envi‐
ronmental	conditions	substantially	away	from	the	mean	(Death,	Fuller,	
&	 Macklin,	 2015;	 Fuller,	 Gilvear,	 Thoms,	 &	 Death,	 2019;	 Puckridge,	
Sheldon, Walker, & Boulton, 1998; Stanford & Ward, 1983). Physical dis‐
turbance is a natural component of aquatic ecosystems, and aquatic bio‐
tas	are	adapted	to	deal	with	these	disturbances	(Fisher	&	Grimm,	1991;	
Lake, 2000; Lytle & Poff, 2004; Resh et al., 1988; Van Looy et al., 2019).

Lake (2000) described three types of disturbance: pulse, press 
and ramp, which trigger three different processes that alter popu‐
lations. A pulse disturbance causes an instantaneous alteration in 
animal or plant densities and possibly diversity, while a press dis‐
turbance causes a sustained change in abundance or composition. 
Ramps have been defined as disturbances that increase in strength 
(and often spatial extent) over time (Lake, 2000). These definitions 
occur within a temporal scale experienced by individual organisms, 
and for aquatic organisms, the spatial scale is that of the reach. At 
this scale, floods are most often pulse or press disturbances, and 
droughts tend to be ramp. At coarser temporal scales, all distur‐
bances may be considered as pulses (Lake, 2003; Poff, 1992).

3  | HABITAT CHANGES

Functionally,	disturbance	changes	the	quantity	and	quality	of	avail‐
able habitat, which can directly modify community composition 
and	affects	biotic	interactions	(Fisher,	Gray,	Grimm,	&	Busch,	1982;	
Frissell,	Liss,	Warren,	&	Hurley,	1986,	Junk,	2005;	Grossman,	Moyle,	
&	 Whitaker,	 1982;	 Grossman,	 Ratajczak,	 Crawford,	 &	 Freeman,	
1998 ; Gurnell, Rinaldi, et al., 2016; Leigh & Datry, 2017;Reice, 
1985; Winemiller et al., 2014). The processes triggered by floods or 
droughts can create two types of changes: concurrent that is occur‐
ring only during the event; and post‐event changes that persist for a 
considerable time after the event (Bork & Kranz, 2008; Death et al., 
2015; Leigh & Datry, 2017; Pearsons, Li, & Lamberti, 1992).

3.1 | Habitat changes caused by floods

Floods	affect	habitat	elements	such	as	stream	substrate	composition,	
stability, refugia, river channel cross‐section and planform morphology, 
and the flow regime (Lake, 2000, 2007; Poff, 1992). However, as floods 
are pulse disturbances, their effects are most strongly related to the mag‐
nitude	of	the	event	(Grimm	&	Fisher,	1989;	Herget	et	al.,	2015;	Molles,	
1985;	Pearsons	et	al.,	1992;	Stolz,	Grunert,	&	Fülling,	2013;	Wetter	et	
al., 2011). The effects of flooding may vary from minor geomorpho‐
logical changes caused by small spates or freshets, to alteration of the 
entire structure of the stream channel caused by extended, powerful 
high discharge events (Bork & Kranz, 2008; Costa & O'Connor, 1995; 
Dotterweich, 2008; Hauer & Habersack, 2009). Wolman and Miller 
(1960) showed that floods of bankfull discharge cause most geomorpho‐
logical change because they have significant stream power and occur 
relatively frequently. Out‐of‐season floods are acknowledged to create 
more significant changes to river morphology than those occurring dur‐
ing typical wet seasons (Giller, 2005; Lytle, 2003; Wetter et al., 2011).

3.1.1 | Concurrent changes

At the onset of a natural flood event, the increasing discharge 
raises flow velocities, and the thalweg of the river channel deep‐
ens and widens. Subsequently, mobilisation and deposition patterns 
reverse: pools are scoured and deposition takes place at the riffle 
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areas, reducing the difference in water depth and velocity between 
pools and riffles (velocity‐reversal phenomenon, Hogan & Church, 
1989;	Keller	&	Florsheim,	1993;	Thompson,	Wohl,	&	Jarrett,	1999).	
The temperature can either increase (e.g. in consequence of warm 
thunderstorms) or decrease (e.g. snowmelt waters), but it gener‐
ally becomes more diverse across a cross‐sectional profile (Tockner, 
Malard, & Ward, 2000).

The extent of habitat change is also a function of river type 
and morphology (Magoulick & Kobza, 2003; Tockner et al., 2000). 
In constrained rivers, floods raise flow velocity and shear stress, 
creating major changes in channel morphology through the scour‐
ing	and	filling	of	the	streambed	(Gordon,	McMahon,	Finlayson,	&	
Gippel, 2004; Vezza, Parasiewicz, Spairani, & Comoglio, 2014). 
In lowland rivers with extensive floodplains, flood energy is 
more easily dissipated and water velocity and shear stress may 
not increase significantly. Nutrients previously deposited on the 
floodplain are also mobilised, affecting water quality and poten‐
tially greatly increasing primary production rates (Davis, Pusey, & 
Pearson,	2018;	Edwards,	Baker,	Dunbar,	&	Laize,	2012).	Floods	fill	
wetlands, anabranches and flood runners with a slow‐moving flow 
that recedes slowly, and deposits sediments and organic particles 
upon the floodplain.

3.1.2 | Post‐disturbance effects

Floods	reshape	the	distribution	and	composition	of	habitat.	The	con‐
sequences may range from spatial rearrangement of habitats, but 
maintaining a similar quantitative distribution, to complete destruc‐
tion of habitat for some species and creation of habitats for others 
(Arthington, Balcombe, Wilson, Thoms, & Marshall, 2005; Roghair, 
Dolloff, & Underwood, 2002). In some cases, the morphology of the 
channel returns to pre‐flood conditions (dynamic equilibrium), but 
this depends on lower flows being sufficiently powerful to move 
sediments. Thus, recovery is partly determined by river and sedi‐
ment type.

3.2 | Habitat changes caused by droughts

Droughts can be divided into those that cause predictable, sea‐
sonal press disturbances and those that cause less predictable, 
protracted ‘ramp’ disturbances (Humphries & Baldwin, 2003). 
Droughts can either be periodic, seasonal or supra‐seasonal 
events. Seasonal droughts are press disturbances, whereas supra‐
seasonal droughts are ramps marked by an extended decline in 
rainfall (Lake, 2003). Droughts tend to be more spatially exten‐
sive than floods, which are frequently limited to individual basins 
(Edwards et al., 2012).

3.2.1 | Concurrent changes

During a drought, precipitation, runoff, soil moisture, groundwater 
levels and streamflow decline sequentially (Changnon, 1987; Dahm, 
Baker, Moore, & Thibault, 2003; Grigg, 1996). Similar to floods, 

there are both direct and indirect effects on stream habitat during 
the drought. Direct effects include loss of habitat area for aquatic 
organisms and loss of stream connectivity (Lake, 2003; Magoulick & 
Kobza, 2003; Marshall et al., 2016; Matthews & Marsh‐Matthews, 
2003; White, McHugh, & McIntosh, 2016).

Loss of habitat is caused by a lack of flow replenishment from 
upstream and may be exacerbated by evaporation and loss of water 
into the ground. Indirect effects include deterioration of water qual‐
ity caused by increased concentration of organic matter that occurs 
despite	 lower	 overall	 input	 of	 nutrients	 (Dewson,	 James,	 &	 Death,	
2007;	Golladay	&	Battle,	2002;	Zieliński,	Gorniak,	&	Piekarski,	2009).	
The ratio of inorganic to organic nutrients declines, potentially caus‐
ing a shift in stream metabolism (Dahm et al., 2003). Due to reduced 
sediment transport capacity, fine particles and organic matter are de‐
posited on the river bed and into interstitial spaces (McKenzie‐Smith, 
Bunn, & House, 2006). An increase in the density of aquatic organisms, 
as well as growth of algae and cyanobacteria feeding on the concen‐
trated nutrients, may lead to oxygen depletion and potentially hypoxic 
conditions (Suren, Biggs, Kilroy, & Bergey, 2003). During hot periods, 
a continuous increase of water temperature is sometimes accompa‐
nied by reduced inflow of cooler groundwater, and consequent lower 
oxygen solubility and loss of thermal refugia (Elliott, 2000; Torgersen, 
Price, Li, & McIntosh, 1999). Higher temperatures increase decomposi‐
tion rates and, thus, further reduce oxygen concentrations. During cold 
weather periods, droughts may lead to lowering of water temperature, 
and	ice	and	frazil	ice	formation.	Frazil	ice	tends	to	scour	river	bottoms	
causing morphological change (Lake, 2003). Overall, habitat area and 
quality decline during droughts.

3.2.2 | Post‐disturbance effects

Long‐term changes depend on drought intensity, duration and the 
ability of the ecosystem to recover. The changes are mostly of a 
morphological and/or chemical nature, and among others are con‐
sequences of ice‐induced scour or sedimentation. Growth of mac‐
rophytes and riparian vegetation during droughts can create new 
morphological patterns after the event (Gurnell, 2014; Gurnell, 
Corenblit, et al., 2016; Gurnell, Rinaldi, et al., 2016). However, after 
drying, the bare substrate undergoes important chemical changes, 
increasing phosphate retention and re‐oxidisation of sulphur that 
may lead to acidification after re‐wetting (Baldwin & Mitchell, 2000; 
Lamontagne,	Hicks,	Fitzpatrick,	&	Rogers,	2006).

4  | BIOLOGIC AL RESPONSE

There are two generally recognised forms of biological response to 
disturbance: resistance (the capacity of the biota to withstand the 
disturbance) and resilience (the capacity to recover from the distur‐
bance) (Lake, 2000). A third type of response is opportunistic utilisa‐
tion of habitats that are created by the disturbance, such as spawning 
or feeding habitats (Górski et al., 2011; Górski, Winter, De Leeuw, 
Minin, & Nagelkerke, 2010; Grift et al., 2001; Phelps, Tripp, Herzog, 
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& Garvey, 2015; Van Looy et al., 2019; Welcomme, 1979). Resistance 
is observed concurrently with disturbance events, while resilience is 
expressed during the post‐disturbance phase. Opportunism can be 
observed	 in	both	phases.	Figure	1	 represents	 this	concept	 for	 the	
example of floods.

Biological responses are triggered by changes in habitat area and 
quality that fall outside the typical range. Physico‐chemical habitat 
quality attributes are related to flow velocity, water depth, substrate 
stability, temperature and water quality. These factors affect organ‐
isms at the scale at which they perceive their environment (i.e. river 
element and hydraulic unit; see Gurnell et al., 2014). Once the factors 
exceed the typical suitable range, they cause resistance reactions 
that include changes in habitude (i.e. organisms occupy sub‐opti‐
mal habitats when favourable habitats are lost), behaviour (e.g. the 
drag‐minimising body posture and adhesive anchoring observed in 
some invertebrates (Schnauder, Rudnick, Garcia, & Aberle, 2010) or 
body size‐related swimming performance (Radinger & Wolter, 2014; 
Wolter & Arlinghaus, 2003)) and a search for areas offering refuge 
(Lancaster & Belyea, 1997; Meffe, 1984). Resilience is driven by the 
availability of refugia, connectivity and the organism's fecundity as 
well as flexibility of life history strategy (Arlinghaus & Wolter, 2003; 
Klemetsen et al., 2003; Van Looy et al., 2019; Wolter et al., 2016). 
Opportunism is a function of species being able to take advantage of 
circumstances during the disturbance.

4.1 | Biological response to floods

4.1.1 | Concurrent response

Floods	increase	the	overall	wetted	area,	although	much	of	this	area	
may be uninhabitable due to high velocities, suspended solids or 
chemical loads (Hoopes, 1974; Moffett, 1935). This is followed by 
change of habitude from, for example foraging to refuge seeking 
(Bolland, Nunn, Lucas, & Cowx, 2015). In rivers without floodplains, 
this leads to a reduction in abundance and diversity of macroinver‐
tebrates and juvenile fish (Bischoff & Wolter, 2001). Adult fish may 

also be affected by displacement, and injury caused by moving de‐
bris and bed instability, or by a shortage of food (Hogberg & Pegg, 
2016;	 Jensen	 &	 Johnsen,	 1999;	 Lusk,	 Halacˇka,	 &	 Lusková,	 1998;	
Weng, Mookerji, & Mazumder, 2001). Extreme events may scour 
eggs and prevent hatching (Carline & McCullough, 2003; Cowx & de 
Jong,	2004;	Dusterhoff,	Sloat,	&	Ligon,	2017;	Peterson,	Conrad,	&	
Quinn, 2000; Phillips, Lantz, Claire, & Moring, 1975).

In terms of opportunism, salmonids, for example, are well 
adapted to high velocities and use floods to reach spawning grounds 
that are not accessible or suitable during lower flows (DeVries, 1997). 
Inundation of the floodplains of low gradient rivers causes a net in‐
crease in habitat area for many fish species and offers refuge and 
foraging habitat (Beesley et al., 2014; Schwartz & Herricks, 2005). 
The available flooded areas will also determine fish productivity, 
growth and survival, and consequently, density of juvenile year 
classes, especially in spring (Coops et al., 2008; Copp, 1989; Górski 
et	al.,	2010,	2011;	Holčík,	1996).	The	additional	 influx	of	nutrients	
supports rapidly growing populations of macroinvertebrates (Hickey 
& Salas, 1995). Allochthonous inputs and high autochthonous flood‐
plain production dominate ecological processes (Davis et al., 2018; 
Humphries,	Keckeis,	&	Finlayson,	2014).	This	creates	an	abundance	
of	 prey	 for	 fish	 (Allen,	 1993;	 Junk,	 2005).	 The	 abundance	of	 phy‐
tophilous and phytolithophilous species increases due to higher 
food	and	shelter	availability	(Jurajda,	Ondračková,	&	Reichard,	2004;	
Schomaker & Wolter, 2011). However, such a situation is less com‐
mon during winter floods.

4.1.2 | Post‐disturbance effects

Overall, the most important consequence of flooding is a shift of 
species composition towards fish species that are better adapted to, 
or even dependent on, floodplain habitats (Bayley, 1991; Bischoff & 
Wolter,	2001;	Jurajda,	Reichard,	&	Smith,	2006;	Leitman,	Darst,	&	
Nordhaus, 1991; Maher, 1993; Schomaker & Wolter, 2011). Due to 
the high mobility of aquatic organisms, the recolonisation of highly 
disturbed areas occurs rapidly, although the rate is strongly depend‐
ent on availability and quality of refugia (Magoulick & Kobza, 2003; 
Townsend, 1989) and species‐specific dispersal ability (Radinger et 
al.,	2017;	Radinger,	Hölker,	Horký,	Slavík,	&	Wolter,	2018;	Radinger	&	
Wolter,	2015).	Furthermore,	species	composition	and	densities	after	
recovery depend on many morphological changes caused by floods 
(Elwood & Waters, 1969).

4.2 | Biological response to droughts

4.2.1 | Concurrent response

Reduction of habitat area during drought conditions is not only due 
to a smaller wetted area, but also reduced habitat suitability (e.g. 
due to excessive temperatures or nutrients). Many fish change their 
behaviour, adjusting to the new conditions (Davey, Kelly, & Biggs, 
2006;	 Dekar	 &	Magoulick,	 2007;	 Elliott,	 2000,	 2006).	 For	 organ‐
isms that prefer shallow and low‐velocity zones (e.g. invertebrates 

F I G U R E  1   A concept of hydromorphologic (HYMO) changes 
and biological response types during the flood event. Blue line 
represents flow in the river [Colour figure can be viewed at 
wileyonlinelibrary.com]
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and juvenile fish), or that are tolerant to high temperature and low 
oxygen, the amount of suitable habitat may initially increase (Reid, 
Farrell,	 Luke,	&	Chapman,	2013).	As	wetted	area	 further	declines,	
the densities of these organisms increase (Dewson et al., 2007; 
Matthews, Harvey, & Power, 1994; McIntosh, Benbow, & Burky, 
2002). Soon food availability declines and predation increases. The 
numbers of invertebrates decline and fish assemblage structure 
changes as a consequence (Arthington et al., 2005; White et al., 
2016; Wood, Agnew, & Petts, 2000).

In perennial streams, the richness of macroinvertebrate species 
declines due to the loss of habitat diversity. By contrast, the same 
phenomenon leads to local increases in fish species richness in rem‐
nant pools. However, this is an artefact of relocation of fish from 
de‐watered areas (Pires, Pires, Collares‐Pereira, & Magalhães, 2010). 
Again, predation by fish and other vertebrates becomes a limiting 
factor	 for	 macroinvertebrates	 (Labbe	 &	 Fausch,	 2000;	 Maceda‐
Veiga, Salvadó, Vinyoles, & De Sostoa, 2009).

Since large portions of aquatic zones become terrestrial, seden‐
tary and sessile species, such as freshwater mussels, are at risk of 
stranding, desiccation and predation. The temperature increase in 
expanding shallow margins also exposes such organisms to thermal 
shock (Castelli, Parasiewicz, & Rogers, 2011).

4.2.2 | Long‐lasting effects

The overall consequence of drought is a change in species composi‐
tion towards drought‐tolerant, small‐bodied species, that is those for 
which habitat conditions have actually improved (Boix et al., 2010; 
Leigh	&	Datry,	2017;	Ruhí,	Holmes,	Rinne,	&	Sabo,	2015;	Schomaker	
& Wolter, 2011). As drought persists and water quality exceeds criti‐
cal thresholds, the numbers of individuals rapidly declines (Extence, 
1981).	For	fish,	 the	timing	of	drought	 is	 important,	as	 it	may	affect	

sensitive life history stages such as spawning or egg incubation. This 
shapes community composition in future years by potentially caus‐
ing	the	failure	of	entire	year	classes.	Fish	and	macroinvertebrates	can	
recover quickly from short‐term droughts, but availability of refugia 
during the drought is critical for this (Covich, Crowl, & Scatena, 2003; 
Fenoglio,	Bo,	&	Bosi,	2006;	Matthews	&	Marsh‐Matthews,	2003).	If	
cease‐to‐flow conditions occur, populations may go locally extinct un‐
less aquatic dispersers have made it to permanent water. Populations 
can re‐establish through subsequent high‐flow events. Recovery 
from longer‐term droughts that span multiple years is slower because 
of the smaller pool of surviving organisms or greater distances over 
which recolonisation must occur. The impacts of supra‐seasonal 
droughts are difficult to predict because of limited experience of 
these	events	(Lake,	2007;	Ruhí	et	al.,	2015).

4.3 | What affects the intensity and direction of 
biological response?

The above sections describe a general pattern of biological response. 
Floods	 and	 droughts	 may	 lead	 to	 a	 change	 in	 aquatic	 community	
composition, impacting upon the organisms less adapted to the dis‐
turbance and promoting those better adapted. During flooding, the 
mechanisms leading to these changes are drift, injury, dislocation, and 
concurrent and post‐disturbance habitat modifications. However, the 
flood is not solely a damaging disturbance, but also a major regenerator 
of biodiversity and production. Drought, by contrast, leads, at coarse 
scales, to a net loss of populations through habitat limitation, preda‐
tion and food shortages. Consequently, a general observation is that 
predictable floods tend to increase fish species richness, abundance 
and	biomass,	whereas	droughts	lead	to	a	decline	(Figure	2).

However,	 the	conceptual	model	 in	Figure	2	 is	generic	and	some	
studies have found different results for individual cases (Piniewski et 

F I G U R E  2   Conceptual overview of 
fish responses to change in flow habitat 
characteristics (modified from Webb 
et al., 2010). The model hypothesizes 
that with reduction of flow, there will 
be negative effects on the behavioural 
and reproductive characteristics of 
native fish and a decrease in population 
and community composition measures. 
Conversely, the same changes in flow 
habitat are hypothesized to increase 
the dominance, spread and abundance 
of terrestrial fauna and flora. The figure 
highlights the generic relationships 
between reductions in flow habitat and 
freshwater fish. Reduction in discharge is 
leading to overall reductions in habitat, it 
also leads to reduce diversity in habitat 
and reduce water quality
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al., 2017). One of the more significant covariates causing such devi‐
ations is the morphological variability of rivers and floodplains. The 
presence of refugia has a direct effect on the survival of animals and is 
therefore important for the speed and scale of recolonisation. Spatial 
variability not only mitigates deleterious impacts by providing refu‐
gia, but also by offering a diversity of habitats that increase richness, 
abundance, biomass, recruitment and productivity prior to any distur‐
bance. Habitat shifts also occur for aquatic biota, caused by changes 
in discharge and resulting changes in flow velocities, shear forces and 
water	 levels	(Wolter	et	al.,	2016).	For	example,	 in	 lowland	floodplain	
rivers, the occurrence of hydraulically inhospitable habitats (i.e. very 
fast flowing) is compensated for by the creation of vast areas of at‐
tractive spawning and larval rearing habitats on the floodplain (Górski 
et	al.,	2010,	2011;	Stoffels,	Rehwinkel,	Price,	&	Fagan,	2016;	van	de	
Wolfshaar, Middelkoop, Addink, Winter, & Nagelkerke, 2011). In high‐
gradient rivers, floods create access to tributaries, effectively expand‐
ing accessible habitat area (Sukhodolov et al., 2009).

The intensity of biological response also depends upon factors 
such	as	geographic	 location	and	seasonality.	For	example,	a	drought	
of the same magnitude will have different consequences in northern 
and southern Europe. In some Mediterranean streams, adaptation to 
climatic regimes means that fish can survive severe droughts, which 
would be lethal to any northern organisms (in review, in press).

Similar differences in response are seen with the timing of distur‐
bance.	For	example,	in	many	rivers	of	the	northern	hemisphere,	severe	
flooding in summer has different biological consequences than during 
the spring (spawning) time. Since summers are characterised by low‐
flow conditions, many animals utilise habitat for rearing and growth, 
with	 extensive	 nursery	 habitats	 (Olaya‐Marín,	 Martínez‐Capel,	 &	
Vezza, 2013). Unpredictable floods (e.g. aseasonal or happening with 
higher frequency than in the past) have been documented as having 
very deleterious effects on fish assemblages (Bischoff & Wolter, 2001; 
George, Baldigo, Smith, & Robinson, 2015; Hogberg & Pegg, 2016).

Consequently, the intensity of biological responses to distur‐
bance events depends on their predictability; populations become 
adapted to the conditions that are most common, and the frequency 
of occurrence in the past is a driver of the predictability.

5  | PREDIC TING IMPAC T OF CLIMATE 
CHANGE ON HYDROLOGIC AL REGIMES

Recent work projecting hydrological response to future weather 
data, derived from various IPCC global circulation models for the 
state of New Hampshire, USA provides some insight on how climate 
change could modify hydrological patterns (Bjerklie & Sturtevant, 
2018). This state‐wide analysis documented a common pattern 
characterised by an increase of higher flows in cold seasons and 
lower flows during spring and summer. The study also projected 
increased variability of flows, with changes to the magnitude of 
baseflows (groundwater inflow) varying depending on elevation 
and micro‐climatic factors related to location. The variability of 
flow responses to climate change within the state is demonstrated 

by comparing flows of a relatively small coastal river, the Oyster 
River and the larger Pemigewassett River (Bjerklie, Ayotte, & 
Cahillane 2015); the above‐described trend is more pronounced in 
the Pemigewassett River. The Oyster River has a little topographic 
relief and sandy soils, while the Pemigewassett River is located in 
the upland and more mountainous terrain (Bjerklie et al., 2015).

The majority of model‐based climate change impact studies ad‐
dress biological consequences by defining changes in ‘ecologically 
relevant’	flow	regimes	(Dhungel,	Tarboton,	Jin,	&	Hawkins,	2016;	Döll	
& Zhang, 2010; Laizé et al., 2013; Morales‐Marin, Rokaya, Sanyal, 
Sereda, & Lindenschmidt, 2019; O'Keeffe et al., 2018; Piniewski, 
Laize, Acreman, Okruszko, & Schneider, 2014; Stagl & Hattermann, 
2016; Vigiak et al., 2018; Van Vliet et al., 2013). Ecological relevance 
in this case is usually assessed based on available literature. This ap‐
proach is better suited for large‐scale analyses: from global (Döll & 
Zhang, 2010), through continental (Laizé et al., 2013; Van Vliet et al., 
2013), to national (Dhungel et al., 2016) and large river basin scale 
(O'Keeffe et al., 2018; Stagl & Hattermann, 2016). Predicted effects 
of climate change on riverine biota are only implicit in such studies. 
For	example,	O'Keeffe	et	al.	(2018)	reported	a	projected	increase	in	
high‐flow frequency in the Vistula and Odra basins in Poland, which 
could be beneficial for northern pike due to more frequent floodplain 
inundation and better river‐floodplain connectivity. On the other 
hand, abnormally high streamflow could wash away the fish and eggs.

In a more complex approach, but typically applied at finer spatial 
scales, climate change forcing is propagated through a modelling cas‐
cade consisting of a hydrological model loosely coupled with a habi‐
tat	suitability	or	species	distribution	model	(Jaeger,	Olden,	&	Pelland,	
2014; Kakouei et al., 2018; Kuemmerlen et al., 2015; Morid, Delavar, 
Eagderi, & Kumar, 2016; Muñoz‐Mas, Lopez‐Nicolas, Martinez‐Capel, 
& Pulido‐Velazquez, 2016; Mustonen et al., 2018; Viganò et al., 2015; 
Woznicki,	Nejadhashemi,	Tang,	&	Wang,	2016).	For	example,	Jaeger	
et al. (2014) predicted a higher frequency of zero‐flow days in an in‐
termittent stream in Arizona, United States, which would inevitably 
lead to increased channel fragmentation and a reduced network‐wide 
hydrological connectivity during spawning of native fish.

Still higher levels of complexity can be achieved by including a hy‐
draulic model in the modelling chain, but such approaches are typically 
applied only at small catchment scales (Guse et al., 2015; Papadaki et 
al., 2016). Guse et al. (2015) reported variable changes in habitat suit‐
ability for fishes in a small stream in northern Germany in response to 
increased occurrence of seasonal habitat deficits. They also predicted 
a dampened effect of climate change on stream hydraulics compared 
with the effects on discharge itself. Papadaki et al. (2016) showed that 
the West Balkan trout is likely to experience a deterioration in habitat 
quantity and quality in summer months in a mountainous stream in 
Greece, also as a result of an increased frequency of low flows.

6  | DISCUSSION

This review underlines the importance of floods and droughts as 
master driving forces of the riverine ecosystems that shape the 
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biotic communities. Each of these events creates immediate and 
long‐lasting modification of habitat conditions for aquatic spe‐
cies. This in turn causes specific biological response that leads to 
changes in the composition of aquatic communities, both in short 
and long terms.

The response may be in the form of resistance, change of habi‐
tude and resilience. The intensity and direction of biological impact 
may vary depending on location and particular climatic and physio‐
graphic setting of the watershed. The variety of impact will further 
diversify if other human‐induced alterations to riverine ecosystems 
are	 included.	For	example,	 the	consequences	of	dam	construction	
are presented in a study on the Tana River, Kenya by Langat, Kumar, 
Koech, and Ghosh (2019).

Nevertheless, the expected overall long‐term consequence of 
natural floods and droughts regime is an increase in biological di‐
versity and ecosystem health. Hence, floods and droughts can be 
seen as ‘rejuvenating’ events essential for ecological equilibrium. 
Therefore, alteration of floods and droughts patterns expected as a 
consequence of climate change may cause dramatic changes in the 
structure and composition of aquatic communities. Quantification of 
these changes is crucial for predicting the biological consequences 
of climate change. To capture these modifications at a continental 
scale, descriptive pattern metrics, which are directly related to bio‐
logical response, need to be identified.

As presented by Humphries et al. (2014) in the River Wave 
Concept, river flow may be conceptualised as series of waves varying 
in	 shape,	amplitude,	wavelength,	and	 frequency.	Floods	are	crests	
and droughts are the troughs of the wave and define its overall char‐
acteristics. These attributes can be used as hydrological metrics to 
characterise the pattern of disturbance events.

As presented above, aquatic organisms have evolved around the 
hydrological events that are predictable and therefore more com‐
mon. Hence, event frequency is a wave metric most closely related 
to disturbance predictability and, consequently, to the intensity of 

biological response. It is an inverse relationship—that is the higher 
the natural frequency, the higher the probability of a less severe bi‐
ological	alteration	(Figure	3).

The relationship between the metrics of event intensity and fre‐
quency is generally described by a power law (Bak, 1996). In undis‐
turbed ecosystems disturbances of large magnitude or duration are 
infrequent and vice versa. Consequently, events of extreme magni‐
tude and/or duration (floods or droughts) can be expected to have 
a much stronger biological effect; they may even cause a depletion 
or expansion of populations. The smallest and most frequent events 
commonly cause a change of habitude, as the migration to refuge 
sets	in	(Figure	3).

According to Lake (2000), floods are pulse disturbances and the 
response to floods is most often of a pulse type. However, extreme 
floods that create dramatic hydromorphologic changes will cause a 
press response. In both cases, flood magnitude is a stronger driver 
than event duration.

Since floods are generally pulse disturbances, the key attributes 
related to biological response are flood frequency and magnitude. 
Consequently, there is a functional relationship between these two 
metrics and the intensity of biological impact of floods. In regions 
where the hydrological response to climate change is an increasing fre‐
quency of high‐flow events, the channel cross‐section will widen and 
deepen to accommodate the more frequent flooding. The time frame 
for the river to adjust to a more stable geometry is associated with the 
time for instream habitat to adjust. If the response also includes larger 
flood events, adjustments to channel morphology may also include 
changes to the planform structure of the river network, including 
changes to the meandering pattern and associated riverine floodplain 
features such as wetlands and ponds. Additionally, changes in flood 
frequency and magnitude will markedly change the amount of woody 
debris entering the river channel, and the amount of sediment trans‐
ported to downstream areas. Subsequently, the relative alteration of 
flood magnitude and frequency that is caused by climate change is 
tied to, and can be indicative of, biological response to climate change.

Since droughts are presses and ramps, the key driver of biological 
response	 is	drought	duration	 (Figure	4).	 In	addition,	 increased	 fre‐
quency even of small disturbance events can also be a cause of ramp 
responses.	 For	 example,	 increased	 frequency	 of	 smaller	 drought	
events that happen during supra‐seasonal droughts will further af‐
fect the physical condition of fauna and may lead to catastrophic 
consequences.

The conclusion of this review is that the influence of floods and 
droughts on aquatic ecosystems under changing climate will be sub‐
stantial, but by considering floods and droughts in terms of their 
effects on the river wave, increased understanding and predict‐
ability of responses is possible. Ecosystem effects can be directly 
related to the frequency and magnitude of floods, and frequency 
and duration of droughts. These metrics can be quantitatively tied 
to the intensity of biological response and allowed for impact pre‐
dictions at multiple scales. In future impact modelling studies, the 
focus should be therefore on the changing River Wave attributes of 
aquatic ecosystems.F I G U R E  3   Biological response type to disturbance drivers
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