
Water Resour Manage
DOI 10.1007/s11269-010-9647-3

Low Flows Regionalization in North-Western Italy

Paolo Vezza · Claudio Comoglio · Maurizio Rosso ·
Alberto Viglione

Received: 18 December 2009 / Accepted: 14 April 2010
© Springer Science+Business Media B.V. 2010

Abstract Prediction of low flows in ungauged catchments is needed in many
branches of water resources management, including water availability and river ecol-
ogy studies. In this paper we analyze the regional variability of q95, i.e., the specific
discharge that is exceeded 95% of the time, in North-Western Italy (Piemonte and
Valle d’Aosta Regions). Multiple regressions with morphoclimatic catchment char-
acteristics are applied in subregions obtained through four classification methods:
Seasonality Indices (SI), Classification and Regression Trees (CRT), Residual Pat-
tern Approach (RPA) and Weighted Cluster Analysis (WCA). All the classification
methods separate the South-Eastern Apennine-Mediterranean area from the rest
of the study domain (the Alps mountain range), even if they use different criteria
to carry out this division (e.g., the percentage of forest, seasonality of low flows,
combination of several parameters). In the Apennine-Mediterranean part of the
area, low flows occur in summer with a long period of drought and are mainly
due to dry climate, moderate snowpack storage and high evapotranspiration. In
Alpine catchments low flows occur in winter and vary according to precipitation,
elevation, interactions with aquifers and land cover. Within the Alpine mountain
range the CRT algorithm identifies a number of small high-elevation catchments in
which the intense drought period during winter has the soil freezing processes as
the driving force. From a statistical point of view, the CRT model outperforms the
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models obtained by the other classification techniques in terms of explained variance
(69%). Because of this, and given the meaningful hydrological interpretation of the
results, we use the CRT model for the regionalization of q95 in Piemonte and Valle
d’Aosta. Lastly, as operational procedure for future low flow regionalization studies,
we suggest that more classification methods should be applied to assist the critical
analysis of the results.

Keywords Low flows · Regionalization · Regional regression ·
Classification and regression tree · CART

1 Introduction

Low flow is a seasonal phenomenon and an integral component of the flow regime,
normally due to groundwater discharge or surface discharge from lakes, marshes, or
melting glaciers. According to the World Meteorological Organization, a possible
definition of low flow is ’the flow of water in a stream during prolonged dry weather’
(WMO 1974). The ability to estimate low flows magnitude and frequency in river
streams is an important issue for water-supply planning, reservoir storage design,
maintenance of quantity and quality of water for irrigation, recreation and environ-
mental flow requirements for wildlife conservation. In a regional-scale context, it
is necessary to provide spatially distributed estimates of low flow, i.e., not only in
monitored streams but also in ungauged watersheds. The study presented here is
preparatory to a regional water planning in Piemonte Region (Noth-Western Italy)
to evaluate the ecological discharges which will have to be released from existing and
new water abstractions.

Smakhtin (2001) and Demuth and Young (2004) give an extensive list of possible
approaches and techniques for low-flows estimation in ungauged catchments, which
include regional regression, spatial interpolation, construction of regional curves and
time series simulations. It is interesting to note that regional studies concerning
low flows are developed also between countries in Europe, breaking the national
boundaries. These activities are mostly associated with the FRIEND project (Flow
Regimes from International Experimental and Network Data, e.g. FREND 1989;
FRIEND 1994, 2006). In FREND (1989) 13 European countries were involved and
the study of the low-flow regimes was carried out on 1350 rivers of NW Europe
(Gustard and Gross 1989). FRIEND activities developed horizontally involving
firstly the former Eastern European countries, rapidly expanded into the other parts
of the world and having today over 100 countries involved within eight regional
FRIEND groups. Examples of regional studies on low flows regarding Eastern and
Central Europe are presented in FRIEND (1994) (see e.g. Kupczyk et al. 1994
and Kobold and Brilly 1994). Kupczyk et al. (1994) reported a study of low-flows
regimes of Polish rivers, defining regional recession curves based on summer low
flows, while Kobold and Brilly (1994) analyzed the relationship between different
low flows durations at regional scale by using the mean annual ten day minimum as
a key variable.

Considering possible approaches for low flows estimation in ungauged catch-
ments, the regional regression approach, which correlates low flows indices and
catchment characteristics, is the most widely used method (e.g. Kottegoda and Rosso



Low Flows Regionalization in North-Western Italy

(2004) or see Smakhtin (2001) for a review of low-flow hydrology). Meaningful
morphoclimatic descriptors of river basins have direct connection to the hydrological
processes taking place in drainage basins. Ideally, these indices should play a role in
the average water balance within the basin, with the morphologic ones related to the
hydrologic response, and the climatic ones related to the water input.

If the study domain is large or very heterogenous in terms of low flows processes, a
number of authors suggest to split the domain into sub-regions in which the low flow
behavior is assumed to be homogeneous (e.g. Gustard et al. 1992; Vogel and Kroll
1992; Schreiber and Demuth 1997; Engeland and Hisdal 2009). The formation of
these regions is performed by grouping the gauged sites according to a classification
criterion using low flows data and/or catchments characteristics. Once catchments are
classified into groups, the regional regression approach is applied to each subregion
obtained and the performance of prediction models is checked by cross-validation.

Recently Laaha and Blöschl (2006a) investigated the performance of four catch-
ment grouping strategies to estimate low flows indices in Austria by means of linear
regressions within the subregions. The four methods are Residual Pattern Approach
(RPA), Weighted Cluster Analysis (WCA), Classification and Regression Trees
algorithm (CRT) and Seasonality Indices (SI). In the first technique (RPA), residuals
from an initial global regression model are plotted in the geographic space and
contiguous regions are manually obtained from the map looking at the patterns
of these residuals. When contiguous regions are delineated, ungauged sites are
allocated to the regions by their geographical location. In the context of low flow
regionalization, the Weighted Cluster Analysis (WCA) was proposed by Nathan and
McMahon (1990), who used 184 catchments in South-West Australia. The method
is based on a number of different cluster analysis approaches and uses Andrews
curves (Andrews 1972) for visualizing similarity in catchment characteristics within
the groups. The Classification and Regression Trees approach (CRT) was used
for the first time in low flows regionalization in Laaha and Blöschl (2006a). The
approach (Breiman et al. 1984) divides a heterogeneous domain into a number of
more homogeneous regions by an optimization technique. Laaha and Blöschl (2006a)
also used a seasonality approach (SI) for classification that performs better than
the others and allows to explain 70% of the spatial variance of q95 in Austria. The
potential of this approach is likely related to the striking differences in seasonal low
flow processes between catchments (Laaha and Blöschl 2006a) and was used, along
with low flow estimates from short stream flow records (Laaha and Blöschl 2005),
in the national low flow estimation procedure for Austria (Laaha and Blöschl 2007).
Recently, Engeland and Hisdal (2009) and Kohnová et al. (2009) applied the same
method of classification based on seasonality in Norway and Slovakia respectively.

In this paper we analyze and interpret the results of the four classification methods
for low flow regionalization proposed by Laaha and Blöschl (2006a) in a different
territorial context. Compared to Laaha and Blöschl (2006a) and Engeland and
Hisdal (2009), we use a more comprehensive multiregressive approach on different
transformations of the dependent variable (q95) and the optimal classification is
chosen based on both statistical performance and hydrological interpretation of
the model parameters. Hereafter, in Section 2, we describe the study area, the
streamflow data and the used catchment characteristics. In Section 3 the regression
and classification methods are explained. Results are presented in Section 4 and
discussed in Section 5.
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2 Data

2.1 Study Area

This study is carried out in Piemonte and Valle d’Aosta Regions (North-Western
Italy), which have different orographic and climatic characteristics. In this rela-
tively small area (of about 30,000 km2) the climate varies from the Apennine-
Mediterranean one in the South-Eastern hills to the Alpine-Continental one in the
Northern Alps mountain range (Claps and Mancino 2002). Low flows regime is char-
acterized by different dry seasons having a slow depletion of the soil reservoir and
consequent recession of discharge within the river (Vezza et al. 2009). In the Alpine
areas, low flows occur during winter and are affected by snow accumulation and
freezing processes. Instead in the Apennine-Mediterranean areas, Summer/Autumn
low flows are normally due to aquifers recharge and occur during dry periods when
evaporation exceeds precipitation. For this reason an analysis of low flows regime
in this territory is both complex and interesting. We use data of catchment areas
between 21 and 1,800 km2, elevations range from 106 m to 4,725 m a.s.l. and mean
annual precipitation from a minimum of about 800 mm in South-Eastern hills to
a maximum of more than 2,000 mm in Northern mountainous areas. All selected

Fig. 1 River network and
selected stream gauges in
North-Western Italy
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catchments cover a total area of more than 12,000 km2, which is 37% of the entire
region. Figure 1 shows the spatial distribution of stream gauges considered in this
study and the associated catchment boundaries, while Table 1 lists, for each of them,
the related catchment area, the mean annual runoff (MAR), the specific discharge
q95, both expressed in ls−1km−2 and the time series length.

Table 1 Stream gauges in North-Western Italy

Code Gauge name Area(km2) MAR(ls−1km−2) q95(ls−1km−2) Years Length

1 Artanavaz St.Oyen 70.90 32.44 10.65 1952-67 16
2 Ayasse Champorcher 40.60 39.89 3.43 1950-73 22
3 Borbera Baracche 201.80 24.70 2.65 1942-61 14
4 Bormida Cassine 1,523.80 16.17 0.98 1947-58 12
5 Bormida Mallare Ferrania 49.88 30.60 1.39 1942-56 15
6 Cervo Passobreve 75.00 46.33 6.72 1942-55 14
7 Chisone Fenestrelle 156.75 20.74 4.53 1942-53 10
8 Chisone S.Martino 581.00 22.01 5.15 1942-71 29
9 Chisone Soucheres Basses 91.94 25.97 5.51 1959-71 12
10 Corsaglia Molline 88.94 33.87 3.90 1942-59 18
11 Dora Baltea Aosta 1,823.80 28.48 6.33 1942-55 10
12 Dora Rhemes Pelaud 54.10 46.07 10.98 1942-55 14
13 Dora Riparia Oulx 254.31 21.02 6.71 1943-56 10
14 Dora Riparia S.Antonino 992.56 18.74 9.01 1942-53 10
15 Erro Sassello 82.69 27.97 2.48 1945-60 16
16 Evancon Champoluc 104.90 30.98 5.10 1949-75 27
17 GessoValletta S.Lorenzo 110.44 43.89 10.35 1952-64 10
18 Grana Monterosso 103.25 25.72 5.55 1942-75 32
19 Grand’Eyvia Crétaz 178.60 35.17 3.87 1952-67 16
20 Lys Gressoney 90.50 43.03 6.35 1942-53 10
21 Mastallone Ponte Folle 146.88 50.74 4.95 1942-65 22
22 Orco Ponte Canavese 614.50 32.79 9.66 1942-75 29
23 Po Crissolo 37.50 39.76 11.89 1943-73 28
24 Rio Bagni Bagni Vinadio 61.63 39.35 9.05 1942-56 11
25 Rio Piz Pietraporzio 21.44 40.33 10.04 1942-56 15
26 Rutor Promise 45.60 52.26 5.67 1942-67 20
27 S.Bernardino Santino 118.81 54.86 8.87 1957-69 12
28 Savara Eau Rousse 83.90 34.21 1.08 1944-62 17
29 Scrivia Serravalle 616.13 26.22 1.15 1942-63 14
30 Sesia Campertogno 169.88 40.43 3.99 1942-52 11
31 Sesia Ponte Aranco 702.88 45.28 5.33 1942-51 10
32 Stura Demonte Gaiola 560.06 32.06 7.83 1942-65 11
33 Stura Demonte Pianche 179.94 29.33 9.36 1942-55 14
34 Stura Lanzo Lanzo 576.94 34.56 7.85 1942-75 33
35 Tanaro Farigliano 1,516.06 24.61 4.81 1942-75 33
36 Tanaro Nucetto 375.63 28.60 4.07 1942-65 22
37 Tanaro Ponte Nava 147.63 32.66 3.48 1942-68 24
38 Toce Cadarese 189.69 49.82 16.56 1957-75 18
39 Toce Candoglia 1,539.81 43.82 15.34 1943-64 21
40 Vermenagna Limone 57.44 35.77 8.44 1942-56 15
41 Vobbia Vobbietta 56.88 26.48 1.46 1956-67 12

As characteristic unit runoff, MAR (Mean Annual Runoff) and q95 are expressed in ls−1km−2 along
with the time series length
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2.2 Discharge Data

Stream flow data series are considered reliable according to the following conditions:
(i) dams absence in the upstream part of the catchment, (ii) a minimum of 10 years
of daily stream flow registration and (iii) no relevance of abstractions or karst effects
during the low flows periods (Vezza et al. 2009). Considering 41 stream gauges,
we use daily discharge data series between 1942 and 1975, for which the longest
and continuous time series are available from the Italian Hydrographic Service
(closed in 1985). The length of streamflow data series is related both on the data
availability and on two previous literature studies carried out in Italy (Castellarin
et al. 2004 and Ganora et al. 2009) showing that five years of observed streamflows
are generally sufficient to obtain good estimates of the long term flow duration curve.
Furthermore, in Laaha and Blöschl (2005) the authors observed that, on average,
1 year of continuous streamflow data measurement clearly outperforms the more
sophisticated regionalization method in the assessment of the specific discharge
q95. In regional analysis, the uncertainty due to regional variability is much more
important than the uncertainty due to sample variability (i.e. to the length of the
observed data).

Because of its relevance for multiple topics of water resources management
(Smakhtin 2001), we use the low flows index q95, i.e., the discharge exceeded on
95% of all days of the measurement period, as a reference for low flow regime. As
mentioned in Vezza et al. (2009), q95 (q347 using days as frequency, Aschwanden
and Kan 1999) is standardized by the catchment area expressing specific runoff and
making it comparable across scales. Laaha and Blöschl (2006a) suggested to split
the nested catchments into sub-catchments between subsequent stream gauges to
avoid problems of dependence between the time series. We however do not use the
same procedure because the number of nested catchments is small and because some
subsequent gauges have temporally discordant time series. This introduces a problem
of spatial statistical dependence of the low flow data, but errors may be larger if the
low flow characteristics are estimated from differences of the stream flow records at
two gauges. As reported in Laaha and Blöschl (2006b), if the errors of the upstream
and downstream gauges are assumed normally distributed and independent, then the
error variances are additive and can cause a lager error in the estimates.

2.3 Catchment Characteristics

In this study 28 morphoclimatic watershed characteristics are used, giving synthetic
information of the shape of the basin surface, the nature of the soil and vegetation,
the topography and climate (Table 2). Due to the limited availability and low
spatial accuracy of digital geological maps, geological variables are not considered
and land use parameters, the Thornthwaite moisture index, runoff curve number
(USDA 1986) and the drainage density are included in the analysis because of their
relationship with geology, soil infiltration rate and vegetation type distribution (see
Gustard and Gross 1989, for a similar approach).

Drainage basin descriptors are divided into different categories explained using
a capitol letter: catchment area A, elevation H, physiographic slope S, orientation
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Table 2 Catchment descriptors included in the regional regression analysis

Symbol Units Description Min. Mean Max.

A 101 km2 Catchment area 2.14 35.35 182.38
A2000 % Catchment area above 2000 m 0.00 44.03 97.80
Hmax 102 m Maximum elevation 9.99 30.56 47.25
Hmin 102 m Minimum elevation 1.06 8.34 18.80
Hmed 102 m Mean elevation 4.81 17.76 27.43
Hrange 102 m Range of altitude 4.81 22.23 42.73
S % Mean slope 20.20 45.28 63.00
Sind % Mean slope independent from DEM resolution 0.80 15.53 38.70
SLDP % Mean slope of the longest drainage path 5.80 18.36 29.30
O deg Main catchment orientation angle 1.01 126.15 355.84
ONORD – Northing (cosine of O) −0.81 0.43 1.00
OEST – Easting (sine of O) −1.00 0.20 1.00
LAT 104 m Centroid latitude 33.00 39.39 50.84
LONG 105 m Centroid longitude 48.86 49.90 51.35
WDD kmkm−2 Stream network density 0.52 0.59 0.74
WRL 102 m Length of the main river 7.17 31.93 133.85
WLCS 102 m Mean length of watershed sides 60.69 74.72 87.06
WSF – Watershed shape factor 0.08 0.30 0.65
WCR – Watershed circularity ratio 0.24 0.49 0.74
LU % Urbanised areas 0.00 0.11 0.75
LF % Forested areas 0.47 46.94 99.96
LCG % Crop and grassland 0.04 11.08 53.21
LR % Wasteland (rocks) 0.00 41.83 99.35
LW % Wetland 0.00 0.04 1.17
LCN – Runoff curve number 26.32 42.19 50.06
CP 102 mm Mean annual precipitation 8.41 12.62 21.13
CIT – Thornthwaite moisture index 0.04 0.89 1.92
CI B – Budyko aridity index 0.45 0.85 1.20

Units are chosen to give similar ranges for all characteristics

O, watershed parameters W, land use L and climatic parameters C. Table 2 shows a
summary of these catchment characteristics. For the descriptors not directly defined
in Table 2 in Vezza et al. (2009) is provided a detailed explanation.

3 Methods

3.1 Regional Regression Analysis

Regional regression is performed building a multi-regressive model that relates
the q95 (dependent variable) to morphoclimatic descriptors (independent variables)
to select the most influential descriptors for low flows regionalization. Compared
to Laaha and Blöschl (2006a) and Engeland and Hisdal (2009) this paper goes
beyond the stepwise regression by using a more comprehensive multiregressive
approach. The models performance coming from 4 different transformations of the
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dependent variable (q95) were used to avoid heteroscedasticity and non-normality of
the residuals of the regressions (Viglione et al. 2007).

q95 = β0 + β1x1 + β2x2 + · · · + βp−1xp−1 + ε; (1)

√
q95 = β0 + β1x1 + β2x2 + · · · + βp−1xp−1 + ε; (2)

3
√

q95 = β0 + β1x1 + β2x2 + · · · + βp−1xp−1 + ε; (3)

ln q95 = β0 + β1x1 + β2x2 + · · · + βp−1xp−1 + ε. (4)

where: xi are the morphoclimatic descriptors and βi are the regression coefficient.
The Ordinary Least Squares technique is used to estimate the coefficients βi (e.g.
Montgomery et al. 2001). While the stepwise regression approach includes models
in which the choice of predictive variables is carried out by an automatic procedure,
in this paper all regression models are attempted with k2h model forms (where k is
the number of forms, as expressed in Eqs. 1–4, and h is the number of candidate
regression parameters). Hence, for each model we consider 4 types of regression
along with 28 morphoclimatic variables (see Section 2.3), for a total of over 1 million
models. The R statistical computing software, and in particular the Non-supervised
Regional Frequency Analysis (nsRFA library, Viglione 2006–2010) is used for the
computation of statistical indices.

According to Vezza et al. (2009), for all regression models, a combination of
all morphoclimatic variables is attempted, satisfying the following assumptions:
the absence of multicollinearity, the significance of the independent variables, the
homoscedasticity and normality of residuals.

The absence of multicollinearity is checked with the Variance Inflation Factor
(VIF, see e.g. Montgomery et al. 2001), while the homoscedasticity and normality
of residuals are checked by diagnostic graphs as showed in the results section. The
Anderson-Darling test (e.g. Laio 2004) is also used to check the normality of the
residuals. A model is finally discarded if, at least, one of the independent variables
resulted to be non-significant according to the Student t test at a 95% significance
level.

The R2
adj (the adjusted coefficient of determination) is used to assess the descrip-

tive power of each regression and it is defined as (for Eq. 4):

R2
adj = (n − 1)

∑n
i=1(q95,i − q̂95,i)

2

(n − p)
∑n

i=1(q95,i − q̄95,i)2
(5)

where: n is the number of considered stations; p is the number of estimated
coefficients; q95,i and q̂95,i are the measured and estimated mean annual flow at the
i-th site and q̄95,i is the average of the mean annual flows for all considered gauges.
For Eqs. 5, 6 and 7 q95,i, q̂95,i and q̄95,i are substituted by their transformations.
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This paper uses a not common approach to multiple regression by employing
different transformations of the dependent variable. The determination coefficient
R2

adj is useful to choose the best model among the ones belonging to a given class
(Eqs. 1 or 2 or 3 or 4) but cannot be used to compare models of different nature.
To this purpose a cross-validation method is carried out, computing the RMSE
(Root Mean Square Error) on the residuals. Furthermore, cross-validation is a full
emulation of the case of model application in ungauged sites (see Section 3.3.2).

3.2 Classification Methods

3.2.1 Seasonality Indices—SI

As shown in the Austrian study, the seasonality indices approach (SI) has a potential
in identifying homogenous groups of catchments using differences in seasonal low
flow processes between catchments (Laaha and Blöschl 2006a). Engeland and Hisdal
(2009) compared a regional regression model based on seasonality with a regional
rainfall-runoff model in Norway for regionalizing low flows and found that the first
one performs better than the second. Laaha and Blöschl (2006b) used three indices
to investigate the low flows seasonality. The first one is the Seasonality Ratio (SR)
which expresses the ratio between summer (q95s ) and winter (q95w

) low flows. From
April 1st to November 30th daily discharge time-series are considered as summer
discharges and from December 1st to March 31st as winter discharges. Values of
SR > 1 indicate the presence of a winter low flows regime and values of SR < 1
indicate the presence of summer low flows regime. The second seasonality parameter
is composed by two indices θ and r (Laaha and Blöschl 2006b). These represent
the mean day of occurrence of low flows. The parameter θ is a circular statistic.
Its values range between 0 and 2π , explaining the q95 mean day of occurrence
(e.g., θ = 0 relates to January 1st, π/2 relates to April 1st, π relates to July 1st and
3/2π relates to October 1st). The parameter r describes the variability of low flows
seasonality, ranging from zero to unity, where r = 1 corresponds to strong seasonality
(all low flows events occurred on exactly the same day of the year) and r = 0 to
no seasonality (low flows events are uniformly distributed over the year). The third
seasonality index is expressed with seasonality histograms based on a monthly scale.
The columns of histograms represent the frequency of discharges below the threshold
q95 over time. Once the three indices are calculated for each catchments, they are
plotted in the geographic space to delineate homogeneous regions in terms of low
flows behavior (Fig. 3). Finally restricted regression models for each sub-region are
performed.

3.2.2 Classif ication and Regression Trees—CRT

The Classification and Regression Trees approach is a classification method which
uses historical data to construct the so-called decision trees. For building decision
trees, CRT splits a learning sample (low flows and catchment characteristics) by using
an algorithm known as binary recursive partitioning (Breiman et al. 1984). CRT can
easily handle both numerical and categorical variables. Classification trees operate
on categorical variables while regression trees operate on continuous variables. CRT
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methodology consists of three parts: (i) Construction of maximum tree (ii) Choice
of the right tree by pruning algorithm; (iii) Classification of unmeasured data using
constructed tree.

Building the maximum tree implies to use a splitting rule dividing the data set
into two parts by maximizing the homogeneity in the two child nodes (minimize
the deviance of the node, i.e. the sum of the squared differences between observed
values of q95 and the mean of the node). This splitting or partitioning starts from
the most important variable to the less important ones and it is applied to each
of the new branches. The tree stops growing when each terminal node consists
of one single observation. Having potential problems with such overfitting, the
CRT algorithm uses tree optimization for pruning back the tree and determine the
optimal number of nodes (Breiman et al. 1984). The optimal number of nodes is
determined by a cross-validation procedure splitting the data set into 10 equally sized
parts and subsequently uses nine parts for calibration and one part for validation.
This procedure, called 10-fold cross-validation, is based on minimizing the average
prediction error. The CRT algorithm has a very good performance in catchments
classification if one is interested in finding groups that are most distinct in terms of
both catchment characteristics and low flow catchment response (Laaha and Blöschl
2006a).

The algorithm has a number of advantages over other models: the CRT is non-
parametric, is invariant to monotone transformations of its independent variables,
easily handles outliers and noisy data isolating them in a separate node and trees
obtained are readily interpretable (Breiman et al. 1984). The main weakness of this
method consists of having unstable results with modification of learning sample (the
structure of the tree may change when models are refitted for subsets of the data).
According to Laaha and Blöschl (2006a) a classification tree is fitted to the group
names of the regression tree as categorical dependent variable, which exhibits an
identical structure to the regression tree, but has the advantage of producing the
same group names for various data subsets. For classification trees the splitting rule
consists of the maximization of change of impurity function �i(t):

�i(t) = i(tp) − Pl[i(tl)] − Pr[i(tr)] (6)

where tp is the parent node and Pl[i(tl)] and Pr[i(tr)] are the probabilities of the
left and right child nodes respectively. Breiman et al. (1984) mentioned 5 different
types of impurity function: Gini and Twoing splitting rules, Enthropy rule, χ2 rule
and maximum deviation rule. Anyway, the authors proved that the final tree is
insensitive to the choice of the rule. Also for classification trees a cross-validation
procedure is needed to find the best tree size. In this case, the quality of the global
tree approximation is assessed by the misclassification error, which is the ratio of
misclassified catchments and all classified catchments.

As the dependent variable (q95) needs to be normally distributed for optimal
tree construction, we examine the distribution of four transformation of q95 with the
Anderson-Darling normality test. To build the regression tree we use a square-root
transformation of q95 that yields a distribution with the best results in passing the
normality test. The final step of estimating low flows for the ungauged site of interest
is to apply a restricted regional regression model to each group obtained.
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3.2.3 Weighted Cluster Analysis—WCA

According to Nathan and McMahon (1990) procedures, the WCA consists of the
following steps:

1. Apply an overall regression model using standardized catchments characteristics,
and weight the most relevant descriptors according to the magnitude of their β-
coefficients;

2. Run a number of cluster analysis by different measures of similarity and linkage
methods using the weighted catchment characteristics;

3. Plot Andrews curves for each cluster;
4. Identify by visual assessment the set of clusters exhibiting the least within-group

variation;
5. Remove outliers if needed and refine the optimum grouping obtained.

We compare Ward’s method and several combinations of linkage methods (single
linkage, average linkage and complete linkage) using different distance measures
(Euclidean distance and Manhattan distance) for different numbers of clusters. To
display multivariate data, Andrews plots are used to identify the most appropriate
method by visual assessment. In Andrews plots, a point in multi-dimensional space
xZ [x1, x2, . . . , xn] is represented by a function defined as:

F(t) = x1√
2

+ x2 sin t + x3 cos t + x4 sin 2t + x5 cos 2t + . . . (7)

plotted over the range of −π ≤ t ≥ π . These plots can be used to both detect
groups of similar observations and identify outliers in multivariate data. For each
cluster, observations t that are close to one another remain close together. To
allocate ungauged catchments to each group (Nathan and McMahon 1990) proposed
comparing the Andrews curve of an ungauged catchment with the mean curve of
each cluster, since regions obtained by the cluster analysis approach are generally
discontiguous in space. As a final step, again, the low flow value for the site of interest
is estimated from multiple regressions between observed low flows and catchment
characteristics fitted to each of the regions independently.

3.2.4 Residual Pattern Approach—RPA

The residual pattern approach to catchment grouping consists of three steps:

1. Perform stepwise regression to obtain a global regression model;
2. Plot the residuals from the global regression model in the geographic space;
3. If residual patterns are apparent, delineate contiguous regions of similar sign and

magnitude of residuals.

To avoid over-fitted models, we use a parsimonious model resulting in 4 catchment
characteristic and producing clearer residual patterns. The main problem of this
technique consists of extending the initial model to the entire domain of interest.
Using this approach shapes of regions can be artefact and the regional regression
model may have little physical meaning (Laaha and Blöschl 2006a).
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3.3 Assessment of the Regional Model

3.3.1 Assessment of Classif ication Alone: ANOVA Test

To explain how classification methods describe the spatial variability of specific
low flow discharges q95, one-factorial analysis of variance (ANOVA) is used. The
ANOVA may be interpreted as an assessment of a simple regionalization model
where predicted q95 (dependent variable) is simply the average low flow discharge
in each group of a classification and the classification number is the indipendent
variable. The goodness-of-fit measure R2

ANOVA (coefficient of determination) of this
model is the ratio of the variance explained by the classification and the total variance
of low flows.

3.3.2 Cross-validation

The value of the classification methods for estimating low flow characteristics at
ungauged sites cannot be fully assessed by goodness-of-fit statistics (e.g. coefficient
of determination R2

adj). We use a cross-validation procedure as the advantage over
other techniques of assessing predictive errors is its robustness and its general
applicability to all regionalization models. Cross-validation is hence an emulation of
the case of ungauged sites. The RMSECV is defined as the square-root of the average
residual square error VCV :

RMSECV = √
VCV =

√
√
√
√ 1

n

n∑

1=1

(q̂95,i − q95,i)2 (8)

where q̂95,i is the estimated value of the i-th dependent variable obtained using a
model estimated with all the observations except the i-th one. It is also possible to
define the coefficient of determination based on cross-validation as:

R2
CV = var(q95) − VCV

var(q95)
(9)

For each class the multi-regressive model based on the best performances in terms
of R2

adj, with the lower RMSECV and the bigger R2
CV (the best model) and with

the use of the most commonly-available parameters (the simplest model) is chosen.
The selected models are checked with respect to the assumptions underlying the
regression analysis (see Section 3.1).

4 Results

4.1 Global Regression Model

An overall global regression model is fitted to all 41 catchments. Best regressions are
chosen on the basis of the criteria discussed in paragraph 3 and considering all the
possible linear regression models. Figure 2 shows the four different transformations
of q95 used to build a global regression model. The value of the Anderson-Darling
test statistic A is reported along with the associated p-value. The hypothesis of
normality is rejected if the p-value is lower than or equal to 0.05 or the parameter A
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Fig. 2 Global regression
model: diagnostic plots for
different transformations of
q95 useful to avoid problems of
heteroscedasticity and
non-normality of the
regressions residuals. The
Anderson-Darling normality
test rejects the hypothesis of
normality when the p-value is
less than or equal to 0.05 or
the parameter A is bigger than
0.75. For the global model the
best result is obtained by using
q95 not transformed

is bigger than 0.75. The non-transformed q95, which gives the best Anderson-Darling
test result, is chosen as global model. Table 3 outlines the best global regressions
obtained for each model class, along with R2

adj, RMSECV and the cross-validation
coefficient of determination R2

CV . The last two statistic are obtained from cross-

Table 3 Global regression models

Regression model R2
adj RMSECV R2

CV

q95 = −7.31 + 0.504(Hmed) − 0.337(SLDP) + 0.149(LCG) 0.643 2.420 0.572
+ 0.737(CP)√

q95 = −0.504 + 0.107(Hmed) − 0.0639(SLDP) + 0.0288(LCG) 0.657 2.425 0.571
+ 0.149(CP)

3
√

q95 = 0.283 + 0.0546(Hmed) − 0.0315(SLDP) + 0.0143(LCG) 0.654 2.470 0.555
+ 0.0751(CP)

lnq95 = 2.631 + 0.0225(Hrange) − 0.0749(LAT) + 0.0212(LCG) 0.630 3.138 0.302
+ 0.0982(CP)
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validated residuals and, therefore, are representative of the prediction of low flows
in ungauged catchments.

Though differences between models are marginal, the global regression
shows the best relative performance R2

CV = 57%, corresponding to RMSECV =
2.420 ls−1km−2, and the best results for the residuals normality test when considering
q95 without transformation. In this study, model assumptions (normality of residuals
and heteroscedasticity) are carefully checked by three diagnostic graphs: scatter plots
of observed versus predicted values, residual plot as a function of observed values
and normal probability plots of residuals (Fig. 2). Considering the performance of
the q95 global model (without transformation), the outliers do not tend to increase
with q95 and the residuals can be considered homoscedastic. Cross-validated residual
in normal probability plot are approximately normally distributed performing the
best results in the Anderson-Darling test. Mean elevation (Hmed), slope of longest
drainage path (SLDP), proportion of crop and grasslands (LCG) and mean annual
precipitation (CP) demonstrate are identified to be the most significant variables for
the regionalization of low flows indices.

4.2 Seasonality Indices—SI

The first approach to catchment grouping considered in this study is based on types
of low flow seasonality as defined by Laaha and Blöschl (2006a). Figure 3 represents
the three seasonality indices used to group catchments. Considering the low flows
occurrence, the seasonality indices suggest that the study area can be classified
into two main units. Group 1 is the Apennine-Mediterranean area where low flows
normally occur during summer and Group 2 is the Alpine region, characterized by

(a) (b) (c)

Fig. 3 a Variability and mean day of occurrence of q95. Long arrows indicate strong seasonality and
their direction represents the mean day of occurrence; b Seasonality ratio (SR) between summer and
winter low discharges. SR > 1 indicates a winter low flows regime and SR < 1 indicates a summer
low flows regime; c Non-exceedance frequency histograms (SHs) of specific low flow q95 based on
monthly scale
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winter low flows. Regions with approximately homogeneous seasonality are shown
in Fig. 4a.

The ANOVA test shows that this classification method explains 37% of the
variance only. This low value is not surprising, given that the SI method does
not optimize the similarity between q95 of different catchments but is intended to
reflect hydrological processes (we expect that processes leading to winter low flows
are different from those leading to summer low flows). Indeed, also in Austria
(see, Laaha and Blöschl 2006a) the variance explained by the classification with
seasonality indices was only 34% of the total variance. Since all regions are con-
tiguous, the allocation of ungauged sites is well defined by their location and no re-
classification is needed in the cross-validation procedure. Regional regressions are
fitted independently to each of the two regions and results are summarized in Table 4.
In Group 1 (Apennine-Mediterranean region), the models fit well, with coefficients
of determination equal to 82%. The regression model for the Alpine region (Group
2), instead, exhibits a coefficient of determination R2

adj = 49%. This low coefficient
is not surprising as different types of catchments, differing for mean annual rainfall,
topography and climate, are lumped into a single group. Finally, grouping catchments

Fig. 4 Groups of catchments
based on the four grouping
methods. a refers to
Seasonality Indices method;
b to Classification and
Regression Tree approach;
c to Weighted Cluster Analysis
and d to Residual Pattern
Approach

(a) (b)

(c) (d)
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Table 4 Restricted models based on the four grouping methods

Method Group Regression model R2
adj RMSECV R2

CV

SI 1
√

q95 = 0.535 + 0.0555(Hmax) + 0.0211(LR) 0.822 2.317 0.608
2 q95 = −10.8 + 0.597(Hmed) − 0.348(SLDP) 0.491

+ 0.196(LCG) + 0.833(CP)

CRT 1 3
√

q95 = 0.773 + 0.0297(Hmax) 0.613 2.072 0.687
2 3

√
q95 = −0.211 + 0.0577(Hmed) + 0.0061(WRL) 0.426

+ 0.0107(LCG) + 0.0549(CP)

3 3
√

q95 = 6.259 − 0.403(Hmin) + 0.0545(SLDP) 0.984
WCA 1 3

√
q95 = 0.710 + 0.0344(Hmax) 0.605 2.214 0.642

2 q95 = −17.9 + 0.292(Hmax) + 0.468(LAT) 0.490
3 q95 = 41.0 − 0.512(LAT) − 0.3787(LCN) 0.470

RPA 1
√

q95 = 0.535 + 0.0555(Hmax) + 0.0211(LR) 0.822 2.534 0.531
2 q95 = −4.57 + 0.332(Hrange) + 0.394(SLDP) 0.771

−0.068(LF )

3 q95 = 14.5 − 0.104(LR) 0.538
4 3

√
q95 = 1.67 + 0.0186(LCG) 0.548

SI refers to Seasonality Indices method; CRT to Classification and Regression Tree approach; WCA
to Weighted Cluster Analysis and RPA to Residual Pattern Approach

into two sub-regions based on seasonality leads to two separate regressions having
an overall model performance R2

CV = 61% and RMSECV = 2.317 ls−1km−2. This is
a better prediction performance compared to results of the global regression models.
Laaha and Blöschl (2006a) explained the 70% of the variance of q95 in Austria,
outlining that delineating regions based on seasonality of low flows provides a very
efficient catchments classification. It is interesting to note in regression model of
the Group 2 (Alpine region) mean elevation (Hmed), slope of longest drainage path
(SLDP), proportion of crop and grasslands (LCG) and mean annual precipitation
(CP) demonstrate to be the most significant variables, as in the global regression
model. In Group 2 (Apennine-Mediterranean area) the most important variables
are the maximum altitude (Hmax) and the proportion of rocks (LR) that are related
to topography and especially to the presence of snowpack storage in the upper part
of the catchment area.

4.3 Classification and Regression Trees—CRT

In the classification and regression tree approach the dependent variable (q95) needs
to be normally distributed. We use the square-root transformation of the specific
low flow discharge (

√
q95) as target variable, as this is the closest transformation

to the normal distribution according to the Anderson-Darling normality test. 28
catchments characteristics are used as descriptive variables and the optimal tree size
is determined by 10-fold cross-validation. Fitting the regression tree to the data, it is
possible to define an initial regression tree that has to be pruned back till the lower
total prediction error. Results indicate that the optimum size consists of three nodes
(Fig. 5a) performing the lowest prediction error, that is where the cross-validated
total deviance of the tree is at its minimum.

The obtained regression tree divides the study domain into three regions repre-
sented in Fig. 5a by terminal nodes. The resulting classification uses for partitioning
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Fig. 5 a Regression Tree
obtained using

√
q95 as target

variable. Terminal nodes
represent groups of
catchments. Avg and STD
represent respectively means
and standard deviations of the
node. N indicates the number
of catchments within groups.
The optimal number of
terminal nodes is defined
calculating the minimum value
of cross-validated deviance of
the tree; b Simplified land use
map useful to allocate
ungauged catchments into
sub-regions defined by the
Classification and Regression
Tree algorithm

(a) (b)

land use parameters, in particular the percentage on forested and rocks areas
(LF and LR respectively), creating groups of catchments having similar low flows
characteristics (Fig. 4b). Land use is significant in low processes affecting evapotran-
spiration and soil infiltration rate. In particular they are related to water losses in
low flows discharges during dry periods. Forested areas (Group 1 with LF > 96.5%)
are located in the Apennine hilly zones and piedmont areas. Those catchments are
characterized by a low flow regime with strong drought period ( ¯q95 = 2.40 ls−1km−2)
occurring during summer. Group 2 (Alpine region with LF ≤ 96.5% and LR ≤ 92%)
have a specific ¯q95 discharge, on average, equal to 8.17 ls−1km−2 occurring during
winter and affected by freezing processes of soils and snow cover. Group 3 (LF ≤
96.5% and LR > 92%) is composed by highlands and rocks areas. These catchments
are located in the upper part of the Alps mountain range having a particular low
flows regime occurring in winter ( ¯q95 = 4.08 ls−1km−2).

With the one-way ANOVA test, it is possible to estimate the explained variance
for the CRT classification, that leads to a result of 69%. This large value means that
the CRT approach is an excellent classification method, able to find distinct groups
in terms of both low flow catchment response and catchment characteristics (Laaha
and Blöschl 2006a). Regression equations are fitted to each region independently
(Table 4). Two regions (Group 1 and 3) are well represented by the regression
models (R2

adj = 61% and R2
adj = 98%, respectively). The Alpine region (Group

2) exhibits a moderate model fit equal to 43%. The cross-validation of regional
regression estimates based on the regression tree approach is found as R2

CV = 69%.
This is significantly better than the estimates from the seasonality indices method
where the performance is only R2

CV = 61%. Another advantage of using CRT
algorithm consists in easily allocating ungauged catchment into groups: as CRT
approach does not need to consider contiguous regions, one can allocate ungauged
catchments by using a simplified land cover map (Fig. 5b). With this map, we split
our study domain referring to the CRT classification, by using 5 land use classes
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reported in Table 2. Highlands/moors areas and forested zones will be used to
create groups of catchments having similar low flows characteristics. In Group 2
(Alpine region) for the regression model, mean elevation (Hmed), proportion of crop
and grasslands (LCG) and mean annual precipitation demonstrate to be the most
significant variables, as in the global regression and seasonality indices method. The
only difference is that the slope of longest drainage path (SLDP) is substituted with
the river length (WRL). Another parameter that appears again in CRT regression
models is the maximum altitude (Hmax) for Apennine-Mediterranean areas, as
already shown using seasonality of low flows. For catchments located in moors
and highland the most important variables are the minimum altitude (Hmin) with
a negative influence and the slope of longest drainage path (SLDP) that is related to
topography of these particular catchments.

4.4 Weighted Cluster Analysis

According to Nathan and McMahon (1990) we base a global regression model on
standardized catchment characteristics (descriptors transformed having zero mean
and unit variance) and we find the best regression model defined as:

q95 = 1.78 + 0.35(Hmed) − 0.20(SLDP) + 0.18(LCG) + 0.21(CP) (10)

The β-coefficients of catchment characteristics obtained in the regression are used as
weights in the weighted cluster analysis. Cluster analysis are carried out combining
different distance measures and linkage methods for 3 and 4 clusters of catchments.
Andrews curve are used to evaluate the homogeneity of each group. Figure 6 shows
the classification based on Ward’s method and Euclidean distance which produces
the preferable cluster classification, dividing the study domain into three groups. The
figure shows the group number, the number of catchments for each group and each
line corresponds to one catchment. In group number 2, only two catchments appear
to be different from the rest, so we deem the groups sufficiently homogeneous for
the further analysis, avoiding any subjective re-classification of outliers.

Results of the ANOVA test show that WCA classification explains 45% of the
total spatial variance of q95. This is significantly less than CRT, but it represent a
better result compared to the Seasonality Indices approach. By plotting the clusters
on a map (Fig. 4c) WCA assigns to the same group catchments located at the opposite

Fig. 6 Defined clusters using the Andrews curves coming from Ward’s method and Euclidean
distance. Each graph corresponds to one cluster and each line corresponds to one catchment
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side of the study domain and with completely different climatic characteristics
(e.g. Valle d’Aosta Region, characterized by a typical Alpine climate, and South
Piemonte, influenced by the Apennine-Mediterranean one, are included in the same
group). WCA divides the Apennines areas (i.e Group 1) from Alpine catchments
(Group 2 and 3) like the two previous methods. Within the Alpine region, catchments
are scattered in terms of their location especially grouping together those located
in Valle d’Aosta Region (Group 3 in North-West). Regression models fitted to
each of the regions lead to moderate coefficient of determination R2

adj between 49
to 60% for 3 groups (Table 4). The cross-validation procedure gives a predictive
performance equal to 64% and a RMSECV = 2.214 ls−1km−2. Due to the large
R2

CV coefficient, the weighted cluster analysis appears to be useful for delineating
regions for the regional regressions. In Group 2 and Group 3 (Alpine region), the
centroid latitude (LAT) has some potential in describing low flows regime. Also
USGS curve number (LCN) for Group 2 and maximum altitude Hmax for Group
3 are selected by the regression analysis as important variables. Again, as it is
shown in Table 4, the maximum altitude (Hmax) is the most influential parameter
for Apennine-Mediterranean areas.

4.5 Residual Pattern Approach—RPA

The best global regression model fitted to the data is defined by four catchment
characteristics: mean elevation (Hmed), slope of longest drainage path (SLDP), pro-
portion of crop and grasslands (LCG) and mean annual precipitation (CP). Figure 7
shows the residual map, since the classification method has the preliminary purpose

Fig. 7 Residual pattern of the
best global regression model.
Residuals are divided in 5
classes and plotted in the
geographic space
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to calculate a meaningful residual pattern within the geographic space. Using the sign
and magnitude of residuals it is possible to delineate four regions, used as basis for a
regional regression model. Figure 4d shows groups classification defined by the RPA
method. The way chosen to split the study domain is similar to other studies carry
out in Northern Italy using the same classification technique (Autoritá di Bacino del
Fiume Po - Po River Basin Authority 1999).

The coefficient of determination calculated by one-way ANOVA is R2 = 40%
which means that this classification explains 40% of the total spatial variance of the
specific low flow discharges q95. The ANOVA test gives a better result than for the
Seasonality Indices approach (37%), but it is worse if compared to the Weighted
Cluster Analysis (45%) and especially with the Classification and Regression Tree
(60%). For the Residual Pattern Approach, the four restricted models are presented
in Table 4. Two of the four regions are poorly represented by the regional models
(Groups 3 and 4 with R2

adj = 55% and R2
adj = 54% respectively) which suggest that

models do not fully capture the predictive performance for ungauged sites. However,
the regression model for Group 1 and 2 indicates a good model performance (R2

adj =
82% for Group 1 and R2

adj = 77% for Group 2), which suggests that there may be
significant heterogeneity of low flow processes within these regions. The predictive
performance of the complete regional regression model checked by cross-validation
is R2

CV = 53%. This is significantly worst than the coefficient of determination of the
classification coming from others methods.

5 Discussion

The regional regression approach, which correlates q95 and catchment characteris-
tics, is the most widely used method to estimate low flows in ungauged catchments.
The simplest way to regionalize q95 is the application of a global regression model
to the study domain. The assumption underlying the application of the global
model is that all the different processes leading to low flows can be captured by a
unique relation, which is also linear. This is a quite strong assumption. Indeed the
performance of this method in Piemonte and Valle d’Aosta regions is not optimal:
R2

CV = 57%. Like in Laaha and Blöschl (2006a), our results show that classifying
the study domain in subregions improves the regionalization of q95 through regional
regressions.

Over the global model (regression without grouping), the improvement obtained
by classification is partly related to the degree of nonlinearity that the grouping
methods are likely to capture. Moreover, catchment classification allows to implicitly
take into account factors affecting low flows that cannot be easily included in the
regression models: i) unknown controls that do not change within the region but
across the regions; ii) some predictors can be positively correlated to q95 in one
region and negatively in another one. Unlike in Laaha and Blöschl (2006a), it appears
that, in our particular study domain, delineating regions based on the seasonality
of low flows (SI method) is not the best classification method to regionalize q95

through regional regressions. The coefficient of determination in the cross-validation
mode is R2

CV = 61%. Two other methods perform better than SI: the grouping based
on Classification and Regression Trees (CRT) with R2

CV = 69% (Table 3) and the
weighted cluster analysis (WCA) with R2

CV = 64%. Only the performance of the
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residual pattern approach (RPA) is smaller (R2
CV = 53%), even smaller than a global

regression model on the entire study area.
As a final step of assessing the methods of catchment grouping one can examine

the scatter plots of predicted vs. observed specific low flow discharges q95 (Fig. 8).
The scatter plots allow a detailed evaluation of the performance of individual
catchments including the existence of outliers and a potential heteroscedasticity
of the observations and the predictions. One can observe how the Classification
and Regression Trees approach performs best. Overall the four scatter plots of
methods is it possible to observe how some catchments influence the final result. In
particular considering catchments 38 within Weighted Cluster Analysis scatter plot
and catchments 39 for the other three methods, one can observe how the value of
q95 is underestimated. Having the second best performance, the Weighted Cluster
Analysis generally performs quite well but appears slightly inferior to the CRT as
far as outliers are not so concerned. The Seasonality Indices and Residual Pattern
Approach, as said before, underestimate q95 value for catchment 39 and at the same
time, overestimate low flows in two and three catchments respectively.

The groups obtained by the classification methods (Fig. 4) are quite similar. All
of them identify the Apennine–Mediterranean area in the south-eastern part of the
region as a single cluster (with some minor differences). The area is characterized
by low flows occurring in summer, from July and September, with a particularly
low average value ( ¯q95 = 2.40 ls−1km−2 in the CRT grouping). The streams in this
area are in many cases ephemeral, especially for small catchments in the eastern
part where q95 can be zero. This is not the case of the Tanaro and Vermenagna
rivers (West part of the Apennine-Mediterranean area), which has higher mountains
upstream (higher orographic precipitation) and a lower proportion of forests (lower
evapotranspiration). Here q95 is higher and the CRT method allocates it to another

Fig. 8 Cross-validation scatter
plots of specific low flow
discharges q95(ls−1km−2).
Each point corresponds to one
catchment belonging to a
group. In the figure also the
catchment code and the
overall cross-validation
coefficient are shown
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group. The classification parameter that characterizes the Apennine-Mediterranean
region obtained by the CRT approach is the percentage of forests, which is very
high. Actually, we believe that the relatively low value of ¯q95 in this region is not only
related to the high evapotranspiration, but also to the local climate and moderate
snowpack storage. In a sense, considering also the similar classification of the other
methods, we believe that in this case the proportion of forests LF (the classification
variable of the CRT) also includes information on climate and orographic conditions,
which are different to the rest of the study domain.

Looking at the regression model fitted to the Apennine-Mediterranean region
identified by the CRT, the only relevant predictor variable is the maximum altitude
(Hmax), which is positively correlated to q95. Note that Hmax is the most important
variable also in the regions obtained by the other grouping techniques (Table 4). This
is because, inside the region, high elevation is related to low evaporation and more
rainfall, due to orographic effects. In this region, high elevation also means late spring
snowmelt and, consequently, higher values of low flows, which happen in summer.

Using the Seasonality Indices, all catchments not belonging to the Apennine-
Mediterranean area are included in a single big group, characterized by winter low
flows (from December to March), but indeed very heterogeneous. Using the other
grouping methods, this area is divided into parts. By the RPA three other regions
are identified, which are: the South-Western Alps, characterized by not extremely
high mountains and nivo-pluvial streamflow regimes; the Valle d’Aosta Region
(including Orco and Stura di Lanzo rivers) with higher mountains and presence
of glaciers; and the Northern-Eastern very wet Sesia and Toce watersheds. The
RPA is indeed a manual classification, in which the map of residuals of the global
regression assists the expert into the delineation of regions. The method is not
completely objective and the results reflect the experience of the analyzer. The CRT
and WCA classification methods are instead completely objective. They separate the
area of winter seasonality of low flows into two groups. Both of them group together
catchments of the Valle d’Aosta Region. The WCA groups all of them plus the
Sesia catchment and some high elevated watersheds in the South. This classification
appears to have a small hydrological sense, assigning to the same group catchments
with completely different kind of climate. On the contrary, the CRT groups together
only the small catchments located in the highlands and moors in Valle d’Aosta. One
of the features of the CRT algorithm is to isolate noisy data in separate nodes and,
apparently, this is the reason of the good performance of the CRT in comparison to
the SI method.

From an interpretative point of view, the fact that the CRT splits the very elevated
small Alpine catchments from the others is very interesting. In these very high
catchments, the average q95 is particularly low ( ¯q95 = 4.08 ls−1km−2 versus ¯q95 = 8.17
ls−1km−2 of the others) because of the retention of solid precipitation in the snow
pack and of freezing processes (due to the very high elevations) and also because of
no-soil and no relevant storage in groundwater, due to the high percentage of rocks.
In fact, the percentage of rocks is the splitter, which allows to identify this region by
the CRT. This region is formed by all high elevation catchments and the group has
Hmin and SLDP as descriptors in the linear regression model, where Hmin is negatively
correlated to q95. Anyway, inside the group, elevation still has an important role in
explaining the variability of q95, which is related again to the freezing processes in
winter. Also, the precipitation at higher elevations is snow in winter, not contributing
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to streamflow. Regarding the positive coefficient of SLDP, the mean slope of longest
drainage path generally has a positive effect on low flows and it is correlated with
storage volume in high mountains. The remaining part of the Alpine area (Group
2 of the CRT classification) is still heterogeneous. It is composed of 27 catchments
from South-West to North-East of the region with different climatic conditions and,
in general, high values of low flows ( ¯q95 = 8.17 ls−1km−2). Given the highest mixture
of processes involved, we expect the model for q95 to be more complex and harder
to interpret than in the other two groups. The following parameters are significant:
mean annual precipitation (CP), mean elevation (Hmed), river length (WRL) and
proportion of crop and grasslands (LCG). The positive relation of precipitation with
low flows is obvious. Annual precipitation provides water which is stored in different
ways in the catchments (as snow, in groundwater systems, in soil, in lakes, etc.)
and which is released at different timescales. The effect of Hmed, in the Alpine
range, is essentially related to the decrease of evaporation. We do not expect the
snowmelt to affect the low flows, because these happen from late autumn to late
winter. The river length (WRL) is a measure of catchment size. We would expect
that larger catchments have larger values of q95 because of the positive interactions
between the aquifers and the river stream (gaining streams in the valley). A similar
result was obtained by Engeland and Hisdal (2009), who found that the catchment
area is a good explaining variable for winter low flows in Norway. The proportion
of crop and grasslands (LCG) is also positively correlated to q95. The percentage
of grass and cropland is inversely proportional to the percentage of forest plus
the percentage of rocks. So we would expect that evapotranspiration decreases for
increasing LCG (less forests) thus resulting in highest q95. Also high values of LCG

result in high infiltration capacity and recharge of groundwater systems, much more
than in forests, where also in winter (with low evapotranspiration) water is stored
and not released. Aschwanden and Kan (1999), within a study concerning the low
flows regionalization for Switzerland, outlined that land use plays an important role
in predicting low flows indices, especially considering the characteristics proportion
of agricultural areas and pre-Alpine farming structures. If one looks at the regression
fitted to Group 2 of the SI method, which is similar to the one obtained by CRT but
also includes the small highland catchments, the only difference is that the slope of
longest drainage path (SLDP) appears instead of the river length (WRL). The SLDP

is inversely proportional to q95 and can also be seen as a measure of catchment size,
since small alpine catchments have higher slopes than the big ones.

6 Conclusion

In this study a regional regression approach has been applied to estimate the
specific low flow index q95 in Piemonte and Valle D’Aosta Regions to obtain a
predictive operational model for low flows in ungauged catchments, as preparatory
reference for the environmental flows assessment at regional scale. The methodology
includes the following steps: (i) classification of the study area in hydrologically
homogeneous regions; (ii) application of linear regression models in each region
to relate q95 to catchment and climatic variables. For the first step, we use the
four classification methods compared in Laaha and Blöschl (2006a): Seasonality
Indices (SI), Classification and Regression Trees algorithm (CRT), Weighted Cluster
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Analysis (WCA) and Residual Pattern Approach (RPA). For the second step,
compared to Laaha and Blöschl (2006a), we use a more comprehensive multi-
regressive approach on different transformations of the dependent variable (q95)
and the optimal classification is chosen based on both statistical performance and
hydrological interpretation of the model parameters.

From a statistical point of view, the CRT method outperforms the models ob-
tained by the other techniques in terms of explained variance and therefore can
be used in Piemonte and Valle d’Aosta for the regionalization of low flows. In
addition, we are interested in identifying and understanding the controls on low
flow discharges in our study domain by looking at the data. To do that, the results
are analyzed trying to interpret the hydrological meaning of the obtained regions
and regression models. The splitters used to form regions and the coefficients of
the regressions in these regions reveal the following picture: in the South-Eastern
Apennine-Mediterranean part of the area, low flows occur during summer with a
strong drought period and are mainly due to dry climate, moderate snowpack storage
and high evapotranspiration. Inside this region, the elevation of the catchments is
important because high elevation is related to low evaporation, more rainfall due
to orographic effects and late spring snowmelt. In the small elevated highlands
catchments in North-West, low flows are relatively low and occur in winter, because
of freezing processes that are more or less effective for different elevations. In the
remaining Alpine range, low flows are higher (climate is wetter than in the Apennine
area and warmer than in the highlands), occur in winter and vary according to
precipitation, elevation (because of evaporation), catchment size (because of inter-
actions with aquifers) and land cover (which controls evapotranspiration, infiltration
capacity and recharge of groundwater systems).

We believe that the best classification method is site dependent and can not be
chosen a priori. Looking at the results we can state that the use of more than one
regionalization technique on the same study area is helpful, not only to identify
the best model, but also to interpret the goodness of the results. For instance, all
the classification models separate the Alpine from the Apennine-Mediterranean
area. Since the models use different discriminant variables to separate these regions
(e.g., the percentage of forest, seasonality of low flows, combination of several
parameters), it indicates that this classification is indeed robust. As operational
procedure for future low flow regionalization studies, we suggest that more methods
should be applied to assist the critical analysis of the results.
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