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Prediction of fish presence is needed in many branches of regulated river management, including the definition 
of environmental flows and habitat restoration measures for wildlife conservation. Research on river ecology has 
indicated that fish species distribution can be related to habitat attributes, and models with high predictive 
performance can be obtained by combining biotic and abiotic habitat descriptors. In four selected reference sites 
of the Cabriel River (province of Cuenca, Spain), the presence of Eastern Iberian barbel (Luciobarbus guiraonis) 
was related to environmental variables linked to different mesohabitat characteristics. By means of Random 
Forest (RF), the data collected in the field were used to predict fish presence for two key bioperiods: migration 
and spawning (April-June) and rearing and growth (July-September). The aims of this study are (i) to select the 
most important habitat attributes for the fish presence (ii) to evaluate how biotic interactions among fish species 
affect habitat use and (iii) to examine the feasibility of using RF in building habitat suitability models for fish. 
Random Forest provided an indicator of variables’ importance and the most parsimonious model was selected  
to define the lowest number of variables to be surveyed for future model applications, e.g. habitat restoration 
measures and prediction of areas with high habitat suitability which should be conserved. The preliminary 
results of this research were discussed, as well as possible future developments, showing potentials and 
limitations of Random Forest in building habitat models for fish. 

1 INTRODUCTION 

In the context of the European Habitats (92/43/EEC) and Water Framework (2000/60/EEC) Directives, 
endemic and threatened fish species should be the targets of biodiversity safeguard and wildlife conservation 
actions (Hayer et al. [1]). Habitat suitability models have therefore a number of important applications for the 
conservation and management of target fish species (Mouton et al. [2]), including environmental flows 
assessment (Vezza et al. [3]) and habitat restoration measures (Costa et al. [4]). In particular, habitat models can 
be used (i) to predict species occurrence on the basis of habitat variables, (ii) to improve the understanding of 
species-habitat relationships and (iii) to quantify habitat requirements (see, Ahmadi-Nedushan et al. [5]).  



When studying fish distribution, researchers make the assumption that the associations of fish species and 
habitat characteristics arise from either abiotic (physical and chemical habitat attributes) or biotic factors (e.g., 
biological interactions) or some combination of the two (Guisan et al. [6]). However, very few studies on habitat 
models explicitly include biotic factors for describing interactions among species (see for details, Elith et al. [7]). 
In freshwater ecology, and in particular for fish distribution analysis, meso-scale resolution (e.g., Vezza et al. 
[3]) can be used to capture the confounded effect of biotic and abiotic environmental variables, focusing on the 
ways in which mobile animals interact with the spatial arrangement of habitat characteristics (Addicott et al. [8]). 
Hydromorphological units – HMUs (or mesohabitats) has been increasingly used to describe and evaluate 
instream habitat structures (Parasiewicz [9], Gosselin et al. [10]) and the relevance of the mesoscale for fish 
studies was emphasized by Fausch et al. [11] because habitat features, such as cover sources or obstacles to fish 
movements, were best observed at this scale. Moreover, Mouton et al. [12] highlighted that future research in 
fish habitat modeling should take into account biotic interactions among species, which may play an important 
role in the habitat suitability assessment. 

Most studies on fish–habitat relationships have focused on Salmonids because of their economic importance 
and ubiquity (Gosselin et al. [10]). This study is focused on the Eastern Iberian barbel (Luciobarbus guiraonis), 
a vulnerable fish species (Baillie et al. [13]) typical of the Mediterranean rivers of the Valencia region (i.e. 
between Mijares and Vinalopo, inclusive, Crivelli [14]). The fish population is declining due to the presence of 
water abstractions and habitat modification, which favour the alien species (Kottelat et al. [15], Doadrio [16]). 
Few studies have focused on the general ecology of the Eastern Iberian barbel (Crivelli [14]) and no habitat 
models are currently available in literature. 

Recently, several studies (Cutler et al. [17], Kampichler et al. [18], Siroky [19]) have shown that, compared 
to other methodologies, RF models (Breiman [20]), a machine learning technique based on an automatic 
combination of decision trees, often reach top predictive performances in building predictive habitat models for 
species distribution. To develop a reliable and ecologically relevant species distribution model, in this research 
we used RF to predict the habitat suitability at meso-scale, based on combinations of physical and biological 
habitat descriptors. Two key bioperiods were considered: migration and spawning (April-June) and rearing and 
growth (July-September). The aims of the study are: (i) to select the most important habitat attributes for barbel 
presence (ii) to evaluate how biotic interactions among fish species affect habitat use and (iii) to examine the 
feasibility of using RF in building habitat suitability models for fish. 

2 METHODS 

2.1 Study area 

This study was conducted in four selected sites of the Cabriel River (province of Cuenca, Spain), due to 
their reference habitat conditions (no or little human impact, sensu Vezza et al. [3]), natural flow regime and 
presence of Luciobarbus guiraonis (see Figure 1). The Cabriel River (220 km long and drainage area of 4750 
km2) is part of the Júcar River Basin, which is characterized by a typical Mediterranean climate (i.e. low flows 
and high evapotranspiration in summer and high flows in spring and autumn). 

 

 
 

Figure 1. Location of the four study sites in the river Cabriel (Júcar River Basin - Eastern Spain). Main 
watercourses and dam impoundments are also reported in the map. 



The mean elevation is equal to 1016 m a.s.l. (elevation ranges from 490 to 1790 m a.s.l.) and the mean 
annual precipitation is 500 mm. To describe reference habitat characteristics, the four study sites (named C1, C2, 
C3 and C4 in downstream order, see Figure 1) were located in the upper part of the Cabriel catchment, upstream 
of the large Contreras Dam (Costa et al. [4]). In this part of the catchment, the land cover (from the Corine Land 
Cover classification; Bossard et al. [21]) is mainly represented by forested areas (86%) and crops (12%). At C4, 
the median flow (Q50) is 2.74 m3s-1, high flow (Q5) is 15.83 m3s-1 and low flow (Q95) is 0.94 m3s-1. Note that 
each site differs in terms of morphological characteristics (channel size, mean gradient, dominant substrates and 
cover sources), watershed area and flow duration curves (because of the presence of tributaries located between 
the sites). Thus, the four selected sites can be used to represent the different habitat features available for barbel 
in the Cabriel River. 

2.2 Habitat description and fish data 

The habitat survey described the changes in the HMUs characteristics with different flow rates. Habitat and 
fish population assessments were conducted within each site during 2006, 2007 and 2008, collecting data from a 
total amount of 240 mesohabitats. The survey design ensured equal sampling effort in the four selected reaches 
of the river and each study site was 1 ± 0.1 km long (usually longer to include complete HMUs, Costa et al. [4]). 
Most of the sites included five types of HMUs: pool, glide, rapid, riffle and run (Dolloff et al. [22]) . The surveys 
captured the instream habitat variability across the sites and over a range of discharges (between medium, Q40-
Q50, and low flows, Q80-Q98). All the HMUs were identified and described following the procedure reported in 
Costa et al. [4]. In particular, for each HMU the following habitat attributes were collected ( see Table 1): length, 
mean width, mean and maximum water depth, HMU gradient, types of substrate and cover sources.  
 
Table 1. Code, description, unit and range of the habitat descriptors (i.e. biotic and abiotic parameters) included 
in the RF model. 
 

Variable code Description Unit Range 

Wid Mean channel width m 2.7 - 20.0 

Dmed Mean water depth m 0.29 - 3.52 

Dmax Maximum water depth m 0.34 - 4.10 

Vmed Mean flow velocity m/s 0.04 - 1.05 

Grad HMU Gradient % 0.0 - 9.3 

RK Bedrock % 0 - 100 

CS Coarse substrate (boulders and cobbles) % 0 - 100 

FS Fine substrate (gravel and sand) % 0 - 100 

SC Silt, clay and sludge % 0 - 60 

SI Substrate Index - 1 - 7 

Veg Submerged vegetation % 0 - 90 

Sh Canopy shading  % 0 - 100 

UB Undercut banks % 0 - 100 

WD Woody debris no(0)/yes(1) 0 - 1 

B Boulders no(0)/yes(1) 0 - 1 

Wid150 Mean width of the 150 m stretch upstream the HMU m 2.9 - 14.5 

Dmed150 Mean depth of the 150 m stretch upstream the HMU m 0.29 - 3.52 

Dmax150 Maximum depth of the 150 m stretch upstream the HMU m 0.34 - 4.10 

Vmed150 Mean velocity of the 150 m stretch upstream the HMU m/s 0.04 - 0.89 

Grad150 Mean gradient of the 150 m stretch upstream the HMU % 0.0 - 4.0 

ACAC Abundance of Southern Iberian chub (Squalius pyrenaicus) no(0)/pres.(1)/ab.(2) 0 - 2 

AJUC Abundance of Jucar nase (Parachondrostomas arrigonis) no(0)/pres.(1)/ab.(2) 0 - 2 

ATAG Abundance of Iberian straight-mouth nase 
(Pseudochondrostoma polylepis) 

no(0)/pres.(1)/ab.(2) 0 - 2 

AGOB Abundance of  Pyrenean gudgeon (Gobio lozanoi) no(0)/pres.(1)/ab.(2) 0 - 2 

ATRO Abundance of brown trout (Salmo trutta fario) no(0)/pres.(1)/ab.(2) 0 - 2 

 



The mean flow velocity of each mesohabitat was derived by dividing the mean HMU cross-section by the 
value of the measured discharge. In order to capture the influence of upstream conditions on barbel mesohabitat 
use, channel width, mean and maximum water depth, mean flow velocity and mean gradient were also calculated 
for each HMU using the 150 m upstream stretch characteristics (Britton et al. [23]). 

During the surveys, the fish were counted in each HMU by snorkeling, to consider their presence/absence  
during its diurnal routine and, at the same time, to avoid any damage to the target vulnerable species (Baillie et 
al. [13]). In particular, two divers conducted the underwater counts in three independent passes throughout each 
habitat unit (see Costa et al. [4] for details). This technique was chosen due to its representativeness of fish 
population densities at meso-scale (Gosselin et al. [10]) and the authors consider it was the most appropriate 
methodology for this study due to the morphological characteristics of the river (i.e. clear water, presence of 
deep pools and high density of riparian vegetation). To investigate the biological interactions among species 
(e.g., competition in habitat use), three classes of fish abundance, i.e. no (0), present (1) and abundant (2), were 
also added as biological mesohabitat attributes for all the fish species found in the Cabriel River (see Table 1).  

2.3 Data analysis 

The associations of mesohabitat characteristics with Luciobarbus guiraonis distribution was explored using 
Random Forest (RF) models (Cutler et al. [17], Breiman [20]) in order to establish habitat suitability criteria. 
Random Forest, as implemented in R (R Development Core Team 2009; Liaw et al. [24]) is an ensemble 
learning technique based on a combination of a large set of decision trees (CART, Breiman et al. [25]). Each tree 
is trained by selecting a random bootstrap subset Xi (i = bootstrap iteration which ranges from 1 to t, maximum 
number of trees) of the original dataset X and a random set of predictive variables (Liaw et al. [24]). As the 
response variable is categorical (fish presence/absence), we confine our attention to classification RF models. 
The algorithm for growing a random forest of t classification trees performs as follows (for full details see 
Breiman [20]): 

t bootstrap samples Xi (training dataset) are randomly drawn with replacement from the original dataset, 
each containing approximately two third of the elements of the original dataset X. The elements not included in 
the training dataset are referred to out-of-bag data (OOB, i.e. the validation dataset) for that bootstrap sample. On 
average, each element of X was an OOB element in one-third of the t iterations. 

For each bootstrap sample Xi, an unpruned classification tree is grown. At each node m variables are 
randomly selected and the best split is chosen among them. 

The trees are fully grown and each is used to predict the OOB observations. In particular, the majority vote 
is taken by aggregating the predictions of the t trees and generate new out-of-bag data. Note that, because the 
OOB observations are not used in the fitting of the RF trees, the out-of-bag estimates are essentially cross-
validated accuracy estimates. 

Global RF accuracies and error rates (i.e. the OOB error, EOOB, and the within-class errors, EClass(j)) are 
computed using the out-of-bag predictions. 

The EOOB is also used to choose an optimal value of t and m. Firstly, in our analysis the OOB error 
stabilization occurred between t = 1500 and t = 2500 replicates. However, a heuristic estimation of t taking into 
account the OOB error stabilization and variable interaction, with a large set of independent variables, is defined 
as [2*(t for EOOB stabilization) = 5000] (Evans et al. [26]). Secondly, the m parameter (number of variables 
permutated at each node) is defined as the square root of the total number of predictor variables, with a minimum 
of m = 2 (Breiman [20]). 

To assess the importance of each predictor variable, the values of the variable are randomly permuted for the 
OOB observations, and then the modified out-of-bag data are passed down the trees to get new predictions. The 
difference between the misclassification rate for the modified versus the original out-of-bag data, divided by the 
standard error, is a measure of the importance of the variable. A higher variable importance indicates a larger 
contribution to the RF prediction accuracy. 

To identify the most parsimonious model we applied the Model Improvement Ratio (MIR) technique 
(details in, Murphy et al. [27]). To analyze the seasonal response to habitat changes, two different seasonal 
habitat models were developed, referring to migration and spawning (April-June) and rearing and growth (July-
September) bioperiods (Kottelat et al. [15], Doadrio [16]). Lastly, the partial dependence plots provided a way to 
visualize the marginal effect of the selected independent variables on the predicted probabilities of barbel 
presence (details in Cutler et al. [17]). 



 

Figure 2. (A) Migration and spawning and (B) rearing and growth suitability models for Eastern Iberian barbel, 
built using only abiotic habitat descriptors. The most relevant variables and their relative importance by Mean 
Decrease Gini Index (Breiman [20]) are reported, along with the confusion matrixes of the selected RF models. 

3 RESULTS 

Figure 2 reports the migration and spawning and rearing and growth habitat models for Eastern Iberian 
barbel, built using only abiotic variables. According to the MIR technique the most parsimonious model was 
selected (see Murphy et al. [27] for details). 

For barbel, shelters provided by submerged vegetation and flow velocity were selected as important habitat 
attributes for both analyzed bioperiods. During the migration and spawning, the model was also influenced by 
the fine substrate and the upstream conditions of channel width; during rearing and growth, mean water depth, 
channel width, canopy shading and HMU gradient were selected as relevant environmental variables. 

Note that all predictive habitat models (see Table 2) were significant at P<0.001 and had high model-fit 
accuracy (ranging from 80 to 93%). Overall, kappa statistics are over 0.56 and models show high 
sensitivity/specificity values, indicating substantial predictions with low cross-classification error. In addition, 
the ROC area under curve (AUC) was over 0.80 in all cases and indicated good or excellent model performance. 
Although the models built using only physical habitat attributes performed well, one can observe how 
considering biotic interactions among species increases the global model performance (Table 2).  

 
Table 2. RF models for Eastern Iberian barbel (for migration and spawning, M&S, and rearing and growth, 

R&G, bioperiods). Models were developed using only aboitic and both biotic and abiotic independent variables 
to investigate the influence of biotic interactions. The selected variables (in order of importance), model 
accuracy (%), sensitivity, specificity, Kappa (k), ROC area under curve (AUC) and significance (P) are reported 
for each model. 
 

Model class Bioperiod Selected variables Accuracy  Sensitivity Specificity k AUC P 

Abiotic 

descriptors 

M&S Wid150, Veg, FS 

Vmed 

90 0.89 0.88 0.74 0.93 <0.001 

R&G Dmed, Wid, Vmed, 

Veg, Sh, Grad 

80 0.78 0.82 0.56 0.80 <0.001 

Biotic and 

abiotic 

descriptors 

M&S AGOB, FS, Veg, 

Wid150,  

93 0.95 0.96 0.82 0.98 <0.001 

R&G ACAC, AGOB, 

Dmed, Wid 

85 0.86 0.84 0.66 0.88 <0.001 

 



The abundance of Pyrenean gudgeon (Gobio lozanoi) seemed to negatively influence the barbel distribution, 
both in spring and summer seasons. Moreover, during Summer, also the abundance of Southern Iberian chub 
(Squalius pyrenaicus) demonstrates to influence the barbel presence in a negative sense, reflecting possible 
habitat competition among fish species. 

To represent the marginal effect of a single variable included in the RF models, the partial dependence plots 
were used (Figure 3), showing the relationships between individual predictor variables and predicted 
probabilities of fish presence. For binary classification (i.e. presence/absence of fish), the y-axis on partial 
dependence plots is on the logit scale (see Cutler et al. [17]). 

4 DISCUSSION 

Elith et al. [7] outlined that more effective conservation of endangered species and aquatic biodiversity will 
require new approaches that recognize not only abiotic habitat parameters, but also the different biotic 
interactions among species. Many applications could benefit from these advances in modeling the ecological 
processes that shape species distributions (Guisan et al. [6]). According to Elith et al. [7], the aim of this paper is 
to gain further insight into habitat preferences of Easter Iberian barbel (Luciobarbus guiraonis) and its biotic 
interactions. By means of the RF technique we developed mesohabitat suitability criteria, using two reference 
bioperiods. The obtained models and the relevant variables can be important for prioritizing surveys and 
monitoring programmes (Poff et al. [28]), particularly for the definition of environmental flows and habitat 
restoration measures (e.g., Costa et al. [4]). In freshwater ecology, mesohabitats (or HMUs) can be considered 
the appropriate scale resolution to capture, from a fish species’ viewpoint, the way in which mobile animals 
interact with the spatial arrangement of different habitat characteristics, also considering the seasonal habitat 
changes and migration behaviors (Fausch et al. [11]). 

 

Figure 3. Partial dependence plots for (A) migration and spawning and (B) rearing and growth habitat suitability 
model for Eastern Iberian barbel. Partial plots represent the marginal effect of a single variable included in the 
RF model on the probability of fish presence, while averaging out the effect of all the other parameters. 
 

In this research, the Eastern Iberian barbel presence was found to be related to various aspects of instream 
habitat, in relation to the two studied bioperiods (Table 2). The species occurrence during migration and 
spawning (M&G) was best predicted with variables describing the upstream channel size (Wid150), the amount 
of fine substrate (FS), shelters provided by submerged vegetation (Veg) and mean flow velocity (Vmed). 
Channel size, substrate and flow velocity are known to influence the occurrence of the species during upstream 
migrations (e.g., Kottelat et al. [15]), while the cover provided by submerged vegetation (also selected in the 



rearing and growth, R&G, model) can serve as resting and hiding area for the fish. In contrast, mean water depth, 
channel width and HMU gradient were chosen as the most important habitat attributes during R&G bioperiod. 
Moreover in the R&G model, the canopy shading was also selected as an important habitat characteristic, which 
is a finding consistent with the fish thermal requirements during summer (e.g., Vila-Gispert et al. [29]).  

Partial dependence plot (Figure 3) showed a non-linear relationship between the logit of the probability of 
barbel presence and the selected predictor variables. It is interesting to note how, in the M&S model, the 
probability of presence drops rapidly with increasing flow velocity and then levels off; in contrast, for R&G 
bioperiod flow velocity has the opposite effect: the probability of presence increase and then levels off. These 
changings in habitat preferences are the likely reason for developing seasonal habitat models for fish and indicate 
the interesting potentials of the tree-based methods, and RF in particular, in this kind of analyses. Note that high 
velocity can be limiting during migration and low velocity during summer can be related to low discharge, little 
food availability and high water temperature. 

As reported in Elvira [30] and Kottelat et al. [15] the population of Eastern Iberian barbel is declining due to 
habitat modification which favor alien species. In particular, the introduced species Pyrenean gudgeon (Gobio 
lozanoi) seems to compete in habitat selection with barbel, as gudgeon abundance has a negative influence on the 
probability of barbel presence (not showed). Moreover, during summer, also the abundance of Southern Iberian 
chub (Squalius pyrenaicus) demonstrates to influence the barbel presence, reflecting a possible increase in 
habitat competition during summer low flows. 

The comparison between models developed using abiotic (only) and both biotic and abiotic parameters can 
be useful to evaluate if fish habitat selection is mainly driven (or not) by the instream physical characteristics 
(Mouton et al. [12]). In the case of the Cabriel River, the RF predictions (using only abiotic parameters) showed 
high accuracy (and moderate to high model specificity and sensitivity) and exhibited considerable promise in 
developing predictive models for fish conservation in Mediterranean rivers. However, modelling methods 
including also biotic interactions were considered more ecologically realistic to understand and describe the 
interplay of the different environmental variables for barbel distribution. 

In several RF studies (Vincenzi et al. [31], He et al. [32]), the major interest is to identify the most important 
factors that affect the species distribution. In this research, the Model Improvement Ratio (MIR, Murphy et al. 
[27]) technique was applied in the RF variable selection, in order to optimize the parsimony of the model and 
identify the lowest number of variable to be surveyed for future model applications. Further research efforts 
(according to Olden et al. [33]) will be spent in comparing different statistical methods that best suit the 
characteristics of the data and best fit the proposed application, e.g. predicting potential sites for Eastern Iberian 
barbel habitat enhancement. 
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