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Abstract In the context of water resources planning and

management, the prediction of fish distribution related to

habitat characteristics is fundamental for the definition of

environmental flows and habitat restoration measures. In

particular, threatened and endemic fish species should be

the targets of biodiversity safeguard and wildlife conser-

vation actions. The recently developed meso-scale habitat

model (MesoHABSIM) can provide solutions in this sense

by using multivariate statistical techniques to predict fish

species distribution and to define habitat suitability criteria.

In this research, Random Forests (RF) and Logistic

Regressions (LR) models were used to predict the distri-

bution of bullhead (Cottus gobio) as a function of habitat

conditions. In ten reference streams of the Alps (NW Italy),

95 mesohabitats were sampled for hydro-morphologic and

biological parameters, and RF and LR were used to

distinguish between absence/presence and presence/abun-

dance of fish. The obtained models were compared on the

basis of their performances (model accuracy, sensitivity,

specificity, Cohen’s kappa and area under ROC curve).

Results indicate that RF outperformed LR, for both

absence/presence (RF: 84 % accuracy, k = 0.58 and

AUC = 0.88; LR: 78 % accuracy, k = 0.54 and AUC =

0.85) and presence/abundance models (RF: 79 % accuracy,

k = 0.57 and AUC = 0.87; LR: 69 % accuracy, k = 0.43

and AUC = 0.81). The most important variables, selected

in each model, are discussed and compared to the available

literature. Lastly, results from models’ application in reg-

ulated sites are presented to show the possible use of RF in

predicting habitat availability for fish in Alpine streams.
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Introduction

To meet the aims set by the European Habitats (92/43/

EEC) and Water Framework (2000/60/EEC) Directives,

mitigation of anthropogenic hydro-morphological altera-

tions affecting river ecosystems needs to be addressed.

Therefore, endemic and threatened fish species should be

the targets of habitat enhancement and river restoration

actions (Hayer et al. 2008; Acreman and Ferguson 2010).

Focusing on Italian rivers, water abstractions, habitat

alterations and pollution are the three most important fac-

tors causing endangerment of aquatic biota (Crivelli 1996;

Zerunian 2007; Regione Piemonte 2010) and creating the

need for the conservation of fish populations and commu-

nities. In the last two decades, freshwater fish conservation

has been increasingly considered; several works have
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contributed to understand the effects of human activities on

aquatic organisms (e.g., Gandolfi et al. 1991; Zerunian

2002b; Ciuffardi and Bassani 2005; Comoglio et al. 2007;

Pini Prato et al. 2011) and have underlined that many taxa

are running the risk of extinction (Zerunian 2002a).

Habitat models can play an important role in predicting

spatial and temporal patterns of species distribution (Olden

et al. 2002), having a number of important applications for

the conservation of aquatic organisms (Ahmadi-Nedushan

et al. 2006). In particular, statistical models allow users to

predict species occurrence on the basis of habitat variables,

provide useful insights and understanding of species-hab-

itat relationships (Mouton et al. 2007), and quantify habitat

requirements for environmental flow assessment (Vezza

et al. 2012a).

Meso-scale resolution of freshwater fish habitat (i.e.

mesohabitats) has been widely used as a template for

examining the habitat use by aquatic fauna (Parasiewicz

2001, 2007; Borsányi et al. 2003; Gosselin et al. 2010, 2012).

Hydromorphological units (HMUs) and mesohabitats (e.g.,

series of pools, riffles and rapids), which commonly corre-

spond in size and location (Bain and Knight 1996;

Parasiewicz 2007; Hauer et al. 2010), refer to stream units

mentioned in the habitat classification of Frissell et al. (1986)

and are related to the concept of the functional habitat; i.e.,

areas where animals can be observed for a significant portion

of their diurnal routine (Kemp et al. 1999). They physically

reflect the interplay between hydraulics and riverbed

topography and can be inferred by visual observation of

surface flow characteristics and verified by water depth, flow

velocity and substrate types (Gosselin et al. 2010). More-

over, meso-scale approaches can include a large range of

habitat variables in biological models, which can allow the

understanding of fish behavior at larger spatial scales (Jewitt

et al. 2001). Models predicting the mesohabitat suitability

can therefore guide the design of habitat enhancement and

river rehabilitation actions using fish requirements as eco-

logical reference (Parasiewicz et al. 2012b). The

mesohabitat simulation model (MesoHABSIM) can be used

to define reference conditions for fish aimed at maintaining

the natural ecological integrity of rivers and streams. Fur-

thermore, the MesoHABSIM application has been recently

extended to describe instream habitat in mountainous

watercourses characterized by coarse substrate, high gradi-

ent and complex morphology (Vezza et al. 2012a, b).

Classification procedures are among themostwidely used

statistical methods to predict species distribution and habitat

suitability (Mouton et al. 2010) and a number of computa-

tional statistical techniques are now available (Ahmadi-

Nedushan et al. 2006). Among the different available

approaches for building multivariate habitat suitability

models, we focused our attention on Random Forests (RF,

Breiman 2001; Cutler et al. 2007) and Logistic Regressions

(LR, Parasiewicz 2007; Tirelli et al. 2009) to predict species

distribution and to define fish mesohabitat requirements

(e.g., Mouton et al. 2011). RF is a machine-learning tech-

nique, which combines many decision trees (or CART,

Breiman et al. 1984) to produce prediction outcomes. It is

suitable for both classification and regression (Breiman

2001) and competitive with or superior to most available

methods in the literature (Cutler et al. 2007; Siroky 2009;

Kampichler et al. 2010). On the other hand, LR is a type of

multiple regression analysis used for predicting a binary

variable based on several predictor variables, which can be

both categorical and continuous. LR is already implemented

in the MesoHABSIM methodology, in which the absence/

presence or presence/abundance of fish are modeled using a

logistic function (Parasiewicz 2007).

In this study, we used RF and LR to predict mesohabitat

suitability for fish and evaluated their application in the

framework of the MesoHABSIM simulation system. We

focused our attention on bullhead (Cottus gobio), a small

bottom-dwelling fish that is considered vulnerable in Italy

(Zerunian 2007) and should be the target of future habitat

enhancement measures in Alpine streams and rivers

(Regione Piemonte 2007). Structured populations of bull-

head are indeed rare and mainly located in streams with no

or negligible degrees of impact (Regione Valle d’Aosta

2008; Regione Piemonte 2010). Several studies have

focused on the general ecology of bullhead across Europe

(Roussel and Bardonnet 1996; Gosselin et al. 2010).

However, no habitat models are currently available to

describe habitat requirements of this fish species in Alpine

environments and there is a lack of detailed knowledge on

Italian subpopulations, which are threatened by habitat

alteration and water abstraction (Regione Valle d’Aosta

2008; Regione Piemonte 2010). The mesohabitat approach

can be considered innovative in the study of bullhead. In

fact, only Gosselin et al. (2010) carried out a study on

bullhead mesohabitat use in which the fish displayed a

strong association with glides (i.e., relatively deep habitats

having high rates of velocity increase with flow). Other

studies analyzed bullhead preferences at the micro-scale

(some of them differentiating adults from juveniles) in

relation to a number of variables ranging from four (e.g.,

Carter et al. 2004; Van Liefferinge et al. 2005) to eight

(Davey et al. 2005), with depth, velocity and substrate the

ones most commonly used.

To model habitat requirements of Cottus gobio, the aims

of this study were (i) to identify the most important mes-

ohabitat attributes for bullhead presence and abundance in

Alpine streams, (ii) to evaluate the performances of RF and

LR in building mesohabitat suitability models and (iii) to

investigate possible RF applications in the framework of

MesoHABSIM to predict habitat availability in regulated

Alpine rivers.
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Methods

Study area

The study domain is the mountainous areas of Piemonte

and Valle d’Aosta regions (North-Western Italy), which

together represent 28 % of the total length of the Alpine

mountain range. Alpine watersheds are characterized by

low flows in winter affected by snow cover accumulation,

presence of glaciers and freezing processes (Vezza et al.

2010). Where snowpack is deep and glaciers are present

(Northern Piemonte and Valle d’Aosta), high flows occur

in summer mainly driven by ice and snowmelt. In the

Southern part of the region (Mediterranean Alps), the river

regime can have two peaks: the first high flow usually

occurs late in Spring, in May or even June, and the second

(which is usually lower) in November (Regione Piemonte

2007). Land use is mainly characterized by rocky and

forested areas in the upper part of the catchments, while

crops and vineyards constitute the land cover for the lower

stretches in river valleys.

Ten watercourses with no or negligible degrees of

impact (Fig. 1) were chosen as the environmental reference

condition for the development of habitat suitability models

according to (i) the natural condition of the flow regime;

(ii) the presence of an age-structured fish population; and

(iii) the spatial distribution across the region (Vezza et al.

2012a). The study sites were identified on the basis of the

three above criteria by analyzing institutional databases

(census of water abstractions and river infrastructures,

institutional fish monitoring stations, etc.), and conse-

quently by carrying out direct on-site surveys to verify the

status of bullhead populations and the absence of infra-

structures. Sites were selected only where direct surveys

confirmed the presence of the abovementioned environ-

mental reference conditions. This selection followed the

virtual reference river concept (Parasiewicz et al. 2008),

using the biological needs of desired fauna (e.g. the target

fish community) in order to set the foundation of habitat

assessment at broad scales. To evaluate the RF applica-

bility in the framework of the MesoHABSIM model, three

regulated sites were chosen for models’ application

(Fig. 1). In these watercourses, bullhead populations are

currently almost absent, although expected, due to signifi-

cant habitat alteration and water withdrawal. Table 1

reports the main hydro-morphological features of the

selected streams (i.e. reach elevation, mean channel width

and gradient).

Habitat description and fish data

Within representative stream reaches, 95 hydromorpho-

logical units (HMUs) were identified and described

following the MesoHABSIM approach (Parasiewicz 2007;

Vezza et al. 2012b). Surveys were carried out by mapping

each HMU in a GIS environment by means of a rangefinder

(Trupulse 360B, Laser Technology, Inc., Centennial, CO,

USA), a photographic tripod and a rugged field computer

(Nomad TDS, Field Environmental Instruments Inc., Sun-

nyvale, CA, USA, with GPS positioning). Vezza et al.

(2012b) reported the advantages of using this habitat

description technique, which is particularly suitable for

Alpine high gradient streams. It is based on the use of light

equipment and can be performed when satellite coverage is

marginal or nonexistent or in zones characterized by hiking

difficulties among rocks and often by the presence of snow

and ice.

HMU types included pool, glide, run, riffle, ruffle, rapid,

step-pool, waterfall, backwater and side-arm. To cover the

spatial variability of flow conditions in each HMU,

between 7 and 30 point measurements of water depth,

mean water column velocity and substrate size were carried

out (Vezza et al. 2012a). Seven measurements were

empirically chosen as the smallest statistically relevant

quantity (Parasiewicz 2007). Cover types were identified

visually and consisted of 7 categories: boulders, canopy

shading, woody debris, overhanging vegetation, submerged

vegetation, shallow margins and undercut banks. Physical

attributes with many categories (i.e., HMU types and

cover) were broken down into multiple variables in binary

(No/Yes) format and measurements of depth, velocity and

substrate were divided into frequency categories. Lastly,

mean channel width, water temperature and reach elevation

were included as model inputs to evaluate possible site-

scale effects on bullhead distribution. The total list of the

collected habitat attributes is reported in Table 2.

Fish data were collected by sampling every HMU with

backpack electrofishing (i.e., two-pass removal method,

Meador et al. 2003). To assure the direct association

between sampled areas and sampled fish species, HMUs

were isolated by using nets and, before release within the

same sampled HMU, each fish was measured in terms of

weight and total length. The total number of captured fish

was 166, which were classified into adult and juvenile life

stages by means of length/age relationships (Vezza et al.

2012a). Due to the low number of observations of juveniles

(n = 21), we focused on adult fish (145 individuals).

Data analysis

The association of HMU characteristics with bullhead

presence and abundance was explored using multivariate

probabilistic models to establish habitat suitability criteria.

In particular, Random Forests (RF, Breiman 2001) and

Logistic Regressions (LR, Hosmer and Lemeshow 2000)

were used to identify habitat attributes influencing the fish
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species distribution. Following Parasiewicz (2007), two

different binary models were developed using the data

collected during the fish sampling campaigns: an absence/

presence model, to distinguish between unsuitable and

suitable habitats, and a presence/abundance model, to dis-

tinguish between suitable and optimal habitats. The density

cutoff value (0.05 individuals/m2) for low and high abun-

dance was determined as the inflection point of the

Fig. 1 Study sites for model

development and application in

NW Italy

Table 1 Study sites selected as

environmental reference (Si)

and for models’ application in

regulated reaches (Ai)

Mean values and standard

deviations of reach elevation (m

a.s.l.), mean channel width

(m) and mean channel gradient

(%) are shown. Moreover, Q50

(m3/s) are also reported for each

site

Code River name Reach elevation

(m a.s.l.)

Mean channel

width (m)

Mean channel

gradient (%)

Q50

(m3/s)

S1 Agogna 358 ± 0.5 13.2 ± 1.5 2.1 ± 0.6 2.35

S2 Cavaglione 720 ± 2.4 4.5 ± 2.5 8.2 ± 3.1 1.43

S3 Lurisia 634 ± 1.4 6.5 ± 1.3 3.5 ± 1.3 0.87

S4 Melle 666 ± 1.2 5.1 ± 1.3 12.1 ± 2.9 1.32

S5 Ravine 362 ± 2.6 7.3 ± 3.6 10.4 ± 1.7 2.21

S6 Ricchiaglio 628 ± 2.0 5.4 ± 1.7 12.0 ± 2.0 1.24

S7 Rifreddo 442 ± 0.4 4.8 ± 2.4 2.2 ± 0.8 0.29

S8 Savenca 476 ± 1.2 11.2 ± 1.8 3.1 ± 0.9 1.27

S9 Taonere 573 ± 4.5 10.6 ± 2.3 10.1 ± 2.6 1.67

S10 Valle ritta 643 ± 1.7 6.3 ± 1.2 8.5 ± 2.3 1.03

A1 Dora baltea (Nus) 516 ± 0.6 16.2 ± 4.2 1.5 ± 0.4 9.10

A2 Evançon (Isollaz) 662 ± 1.1 8.6 ± 1.8 3.1 ± 1.5 4.08

A3 Marmore (Covalou) 745 ± 4.5 7.1 ± 2.1 5.9 ± 1.9 5.28
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envelope curve of the fish density histograms (Parasiewicz

et al. 2007; Vezza et al. 2012a). Although the capture

efficiency of adult fish in the two-pass backpack electro-

fishing ranged from 72 to 100 %, the estimated total fish

abundance was considered acceptable to divide bullhead

occurrence into three abundance classes. The prevalence

(i.e. the frequency of occurrence of the target organism)

was therefore 0.42 for the absence/presence model and

0.46 for the presence/abundance model.

Random Forests

As the response variable was a binary variable (fish

absence/presence and presence/abundance), we confined

our attention to classification RF models. In RF, as

implemented in R (library randomForest, version 4.6-7,

Liaw and Wiener 2002) each tree is trained by selecting a

random bootstrap subset Xi (with i ranging from 1 to t,

maximum number of trees) using two-thirds of the original

dataset X and a random set of predictive variables. The

elements not included in the training dataset are referred to

as out-of-bag data (OOB, i.e. cross-validated accuracy

estimates) for that bootstrap sample. On average, each

element of X is an OOB element in one-third of the t iter-

ations. After growing the forest, global RF accuracies and

error rates (i.e. the OOB error, EOOB, and the within-class

errors, EClass(j)) are finally computed using the OOB pre-

dictions (Franklin 2010).

Taking into account OOB error stabilization, the total

number of trees (t) was equal to 2000 replicates (Evans and

Cushman 2009), whereas the m parameter was defined for

each model as the square root of the total number of pre-

dictor variables with a minimum of m = 2 (Breiman 2001).

To assess the importance of a specific predictor variable we

used the function ‘‘importance’’ in the randomForest

library and, in particular, the metric called Mean Decrease

in Accuracy (MDA, Liaw and Wiener 2002). Increase in

MDA variable importance indicates the contribution to the

RF prediction accuracy for that variable. The most parsi-

monious model was identified by the Model Improvement

Ratio (MIR, Murphy et al. 2010) technique, which uses the

MDA variable importance, standardized from zero to one,

to define the best parsimonious model. Using this variable

ranking as reference, the model variables were subset using

0.02 threshold increments, with all variables above the

threshold retained for each model (Evans and Cushman

2009). Each subset model was then compared and the

model that exhibited the minimum EOOB and the lowest

maximum EClass(j) was selected. Lastly, correlation among

selected variables was tested using a correlation matrix to

avoid collinearity effects on model performance.

The partial dependence plots (or response curve), based

on the RF results, provided a way to visualize the marginal

effect of the selected independent variables on the fish

distribution (Cutler et al. 2007) outlining the relationships

between individual habitat variables and the predicted

probabilities of fish presence or abundance.

Logistic regressions

LR have been widely used in the literature for habitat

suitability evaluation (Pearce and Ferrier 2000; Filipe et al.

2002; Tirelli et al. 2009). Moreover, model outputs are

easily interpretable and are implemented in the Meso-

HABSIM simulation system (Parasiewicz 2007). In the LR

model construction, we first calculated the correlation

among potential model inputs by means of a correlation

matrix (polycor package, version 0.7-8, Fox 2007). We

then used the univariate analysis and the ecological rele-

vance of each parameter derived from previous studies

Table 2 Habitat variables used for describing the hydromorphologic units (HMUs)

Variable name Value Classes Cathegory/description

HMU type (No/yes) 10 Pool, glide, run, riffle, ruffle, rapid, step-pool, waterfall, backwater, side arm

HMU Gradient (%) 1 Water surface gradient of the HMU

Cover (No/yes) 7 Boulders, canopy shading, woody debris, overhanging vegetation, submerged

vegetation, shallow margin, undercut banks

Substrate (% of random samples) 12 Pelal, psammal, akal, microlithal, mesolithal, macrolithal, megalithal,

gigalithal

Water depth (% of random samples) 9 Classes in 15 cm increments (range 0–120 cm and above)

Flow velocity (% of random samples) 9 Classes in 15 cm/s increments (range 0–120 cm/s and above)

Mean width (m) 1 Mean channel width at reach scale

Water temperature (°C) 1 Water temperature at reach scale

Elevation (m a.s.l.) 1 Mean reach elevation

See Parasiewicz 2007 and Vezza et al. 2012a for details on variable descriptions

Modelling habitat requirements of bullhead (Cottus gobio)

123

Author's personal copy



(Regione Piemonte 2007) to identify, among the correlated

variables, the ones that were better predictors of the

response variable.

LR models were built using a cross-validation proce-

dure. This approach is frequently used when the number of

observations available is not sufficient to separate the data

and validate the models using an independent data set

(Steyerberg et al. 2001). For each model run, 20 % of the

available data was set aside for validation purposes and,

with the remaining 80 %, the Akaike’s information criteria

(AIC, Sakamoto 1994) and a stepwise forward procedure

were used to determine which parameters should be

included in the model. It is important to note that while the

RF ranking of variables was based on all possible combi-

nations of model inputs, the one-step-ahead search

procedure of the LR may not lead to the best combination

of inputs.

To increase model certainty, the procedure is repeated

20 times and, each time, a new set of randomly selected

data is set aside for validation purposes. After 20 runs, the

model generates a list of parameters selected in at least two

runs and conducts one additional run using only these

parameters as input attributes. Standard errors were eval-

uated to avoid over-fitting and produce parsimonious

models (i.e., resulting in a limited number of habitat

descriptors) while the Receiver Operating Characteristic

(ROC) analysis performed for each predictor was used as a

measure of variable importance (function varImp, caret

package, version 5.15-61, Kuhn 2008). Finally, the ROC

curve and the sensitivity–specificity sum maximization

criterion (Liu et al. 2005; Jiménez-Valverde and Lobo

2007) provided the probability thresholds used to assign

abundance classes to each mesohabitat observation (fish

absence, presence or abundance; Parasiewicz 2007).

Model evaluation

For both RF and LR, the performance of the predictive

models was evaluated using five performance metrics

(accuracy, sensitivity, specificity, Cohen’s kappa and area

under ROC curve) based on the results of the cross-vali-

dation procedures (Mouton et al. 2010). The estimated

accuracy represents the proportion of overall correctly

classified observations, while sensitivity and specificity,

respectively, refer to the proportion of actual positives and

negatives correctly identified as such. The Cohen’s kappa

coefficient is a statistical measure of inter-rater agreement

for categorical items and it is generally thought to be a

more robust measure than simple percent agreement cal-

culation since kappa takes into account the agreement

occurring by chance. The area under ROC curve (AUC),

measured from ROC plots, is a performance metric that is

independent of prevalence (Mouton et al. 2010) and

represents a useful measure of how well a model is

parameterized and calibrated (Manel et al. 2001).

Model application in regulated sites

A comparison of the obtained models was also carried out

by means of habitat evaluation in three regulated sites, i.e.,

Dora Baltea (Nus), Evançon (Isollaz) and Marmore (Co-

valou, Table 1). Since LR is already implemented in the

MesoHABSIM model (Parasiewicz 2007; Parasiewicz

et al. 2012b), this analysis was aimed at evaluating possible

applications of RF to predict habitat availability in regu-

lated Alpine rivers.

For the three regulated sites, bullhead are considered a

present species but local populations are heavily affected

by habitat alteration and water abstraction and only a few

specimens are occasionally sampled (Regione Valle

d’Aosta 2008). The obtained mesohabitat suitability crite-

ria were therefore applied to predict fish distribution (fish

absence, presence and abundance) and, consequently, to

classify habitat into suitability categories (i.e., not suitable,

suitable or optimal habitat, Parasiewicz 2007).

Results

Bullhead were found in 5 of the 10 considered HMU types

(i.e. pool, riffle, rapid, ruffle, run). Table 3 describes the

main HMU features, including the range of mean depth and

mean flow velocity, the dominant substrate and the bull-

head presence proportions.

In Fig. 2, the performance of RF and LR for absence/

presence and presence/abundance models is compared,

highlighting the mean values and one standard deviation

for each performance metric. With regards to model per-

formance, our results show that RF outperformed LR for

both absence/presence (RF: 84 % accuracy, k = 0.58 and

AUC = 0.88; LR: 78 % accuracy, k = 0.54 and

AUC = 0.85) and presence/abundance models (RF: 79 %

accuracy, k = 0.57 and AUC = 0.87; LR: 69 % accuracy,

k = 0.43 and AUC = 0.81). Moreover, for each model, the

confusion matrix was plotted as bar charts (Fig. 3) and the

relative importance of variables was standardized to sum to

one to compare the relative importance of predictors within

a predictor set and across the two statistical methods

(Fig. 4).

The mesohabitat suitability models are reported in

Fig. 5 for RF and in Table 4 for LR, in which the selected

habitat variables are listed in order of importance. ME-

SOLITHAL (6–20 cm) and MACROLITHAL (20–40 cm)

substrate types, which were selected by both statistical

techniques, demonstrated to be the most important habitat

attributes, with a positive influence on bullhead probability
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of presence. The other important attributes defined by RF

were HMU gradient, water depth of 60–75 cm and the

cover provided by canopy shading, while LR selected flow

velocity of 0–15 cm/s, water depth of 15–30 cm and hab-

itat type RUN as significant variables for bullhead

presence. For the prediction of fish abundance, both sta-

tistical techniques provided almost the same results in

terms of selected variables; namely HMU gradient, flow

velocity of 0–15 cm/s and water depth of 15–30 cm. In

addition, RF abundance model included flow velocity of

30–45 cm/s and LR selected the habitat type RUFFLE (i.e.

dewatered rapid) as significant model input.

The models’ application in two regulated stream reaches

is reported in Fig. 6 (i.e., Dora Baltea—Nus and Evan-

çon—Isollaz) showing the spatial distribution of

mesohabitats and the relative model predictions in terms of

unsuitable, suitable and optimal habitat. The overall com-

parison of models’ application (three regulated sites) is

reported in Fig. 7 by means of a coincidence matrix

(Stehman 1997) displayed using bar-charts. The overall

agreement between the two statistical techniques in the

prediction of mesohabitat suitability was 77 % with a

Cohen’s kappa equal to 0.59.

Discussion

The present research gave insight into the mesohabitat

preferences of bullhead in Alpine streams and compared

the accuracies of Random Forests (RF) and Logistic

Regressions (LR) to develop habitat suitability models for

fish. RF is currently considered a promising technique in

ecology (Cutler et al. 2007; Franklin 2010; Drew et al.

2011; Cheng et al. 2012), and although RF has already

been applied in freshwater fish studies (Buisson et al. 2010;

Grenouillet et al. 2011; Mouton et al. 2011; Markovic et al.

2012), this paper contributed to test the applicability of this

statistical technique in the field of habitat-hydraulic mod-

eling. On the other hand, LR has been widely tested and

applied on various studies on freshwater fish (Pearce and

Ferrier 2000; Filipe et al. 2002; Tirelli et al. 2009) and in

the MesoHABSIM simulation system (Parasiewicz 2007;

Table 3 Description of the five mesohabitat types in which bullhead were present

Mesohabitat

type

Proportion over

the total sampled

mesohabitats

Range of mean

depth (cm)

Range of mean

velocity (cm/s)

Dominant

substrate (-)

Substrate

classes (cm)

Bullhead

presence (%)

Pool 23 42–110 0–32 Micro-Meso-Macrolithal 2–6; 6–20; 20–40 22

Riffle 23 18–76 15–75 Meso-Macrolithal 6–20; 20–40 43

Rapid 24 12–60 28–95 Meso-Macrolithal 6–20; 20–40 50

Ruffle 10 13–47 15–48 Meso-Macrolithal 6–20; 20–40 60

Run 11 32–67 16–45 Micro-Meso-Macrolithal 2–6; 6–20; 20–40 64

Bullhead were absent in glides, plunge pools, waterfalls, backwaters and side arms

Fig. 2 Random Forests and Logistic Regressions performance for

absence/presence and presence/abundance models. Confidence bars

show the mean values and one standard deviation of cross-validation

results in terms of model accuracy (correctly classified observations),

sensitivity, specificity, Cohen’s kappa (k) and area under ROC curve

(AUC)
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Parasiewicz et al. 2012a). We selected the RF technique

since it has been successfully applied in ecology and is

categorised among the best techniques available for eco-

logical modeling. However, other comparative studies can

be performed to test the implementation of other tech-

niques in the frame of habitat-hydraulic models (e.g.,

Olden and Jackson 2002; Kampichler et al. 2010; Melcher

et al. 2012).

Fish data collection and the description of mesohabitat

characteristics was carried out in 10 reference streams of

NW Italy (Alps mountain range) in accordance to the

MesoHABSIM approach (Vezza et al. 2012a). Bullhead

were found as present in five types of hydromorphological

units (HMUs): pool, riffles, rapids, ruffles and runs, and, in

contrast with Gosselin et al. (2010), no bullhead were

observed in glides. This result is not surprising due to the

important morphological differences between Alpine

streams and the Lowland Dowles Brook (Worcestershire,

UK, Gosselin et al. 2010) and the limited occurrence of

glides in the mountainous area of the Alps (4 % over the

total number of sampled HMUs). On the other hand, the

presence of bullhead in pools is in agreement with Gosselin

et al. (2010) and, furthermore, the higher presence in riffles

is supported by previous studies (Roussel and Bardonnet

1996; Langford and Hawkins 1997; Cowx and Harvey

2003; Tomlinson and Perrow 2003) that indicated a marked

preference for this HMU type. However, the highest bull-

head presence (64 %) was recorded in runs, which were

selected by LR as significant for an high probability of

bullhead presence.

We evaluated and compared RF and LR based on model

performance and the ecological relevance of selected

variables. The performance of RF exceeds that of LR in

accordance with other comparative studies (Cutler et al.

2007; Siroky 2009) for both absence/presence and pre-

sence/abundance model (Figs. 2 and 3). This result

underlines the advantages of RF compared to LR in terms

of an higher classification accuracy. RF also showed more

stable results (lower standard deviation) compared to the

LR algorithm (Fig. 2) and should be therefore favored to

model fish-habitat relationships because this technique

should provide superior results when the data relationships

are non-linear (see e.g., the partial plots reported in Fig. 5).

As highlighted by Olden and Jackson (2002), patterns

within ecological data are commonly non-linear in nature

and the non-linear approaches should perform as well as

linear methods when the data show linear relationships. It

is important to highlight that to overcome the problem of

Fig. 3 Confusion matrices of

the different models based on

Random Forests (RF) and

Logistic regressions (LR)

modeling techniques. All

matrices are reported as bar

charts and cross-print reference

values and model predictions
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variability in predictions among different modeling tech-

niques, consensus methods can be used to combine

ensembles of species range forecasts and to reduce the

uncertainty of results (Marmion et al. 2009). The imple-

mentation of these ensemble forecasting of species

distributions can be seen as a further development in the

field of habitat-hydraulic modeling.

The variable selection procedure was based on two

different approaches for the two statistical techniques and

led to two different sets of model inputs. This result was

confirmed in other studies (Xu and Zhang 2001; Abra-

hamsson et al. 2003; Reunanen 2003; Wells et al. 2011), in

which different variable selection procedures produced

similar subsets of variables. For example, MESOLITHAL

and MACROLITHAL were the most important predictors

in both absence/presence models (Fig. 4). In addition, LR

selected velocity of 0–15 cm/s, water depth of 15–30 cm

and habitat type RUN as significant variables and the

relative importance of these three variables was higher

compared to the three remaining predictors selected in the

RF model. These substantial differences are also not sur-

prising given the inherent differences between the two

types of statistical approaches. The random recursive-par-

titioning algorithm of RF has a number of advantages over

the training algorithms of LR, including its ability to cap-

ture non-linear relationships and model complex

interactions among predictor variables (Cutler et al. 2007).

Therefore, these advantages are most likely responsible for

the differences in terms of selected variables and relative

importance. It is interesting to note that, during the model

construction phase, RF was faster to train and run than LR,

having the cross-validation and the variable ranking pro-

cedures embedded in the algorithm (R package, random

Forest, Liaw and Wiener 2002).

Considering bullhead preference for the three most

commonly analyzed variables (depth, velocity and

Fig. 4 Relative importance

(standardized to sum to one) of

each input variable to predict

absence/presence or presence/

abundance of bullhead in Alpine

streams for Random Forests

(RF) and Logistic Regressions

(LR) models
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substrate), a general agreement among existing studies is

only related to substrate, which seems to be the most rel-

evant parameter predicting fish presence: bullhead prefer

non-cohesive substrates associated with a wide range of

coarse mineral particles like gravel, pebbles, cobbles and

boulders (Davey et al. 2005; Legalle et al. 2005a, b; Van

Liefferinge et al. 2005; Knaepkens et al. 2006; Gosselin

et al. 2010) with adults occupying zones with coarser

substrate than juveniles (Davey et al. 2005; Van Lieffe-

ringe et al. 2005). Our results further support the above

findings, showing that two types of substrates (i.e., ME-

SOLITHAL and MACROLITHAL) were the most

important habitat variables in predicting species distribu-

tion (Fig. 4), having a positive influence on fish probability

of presence in both RF and LR models (i.e., the increasing

trend in the RF partial plots, Fig. 5 and the positive vari-

able coefficients in the LR model, Table 4). As a general

rule to ensure that bullhead-rearing habitats are available

under regulated flow conditions, the presence of MESOL-

ITHAL and MACROLITHAL should be maintained as

well as substrate embeddedness should not increase above

the natural levels observed.

Flow velocities ranging from 0 to 0.15 m/s were iden-

tified by LR models to have a negative influence on both

Fig. 5 Bullhead Random Forest model. Selected variables (in order

of importance) for (a) absence/presence and (b) presence/abundance

models. The relationship between variables and probability is

reported using partial dependence plots to investigate the marginal

effect of the selected independent variable on the predicted proba-

bility of bullhead presence and abundance (details in, Cutler et al.

2007)

Table 4 Logistic regression models to predict absence/presence and presence/abundance of bullhead

Absence/presence Presence/abundance

Probability cutoff 0.46 Probability cutoff 0.54

Constant -7.06 Constant -4.21

MESOLITHAL (6–20 cm) 10.00 HMU gradient (%) 7.17

MACROLITHAL (20–40 cm) 7.99 Freq. of velocity 0–15 cm/s -6.32

Freq. of velocity 0–15 cm/s -2.24 Freq. of depth 15–30 cm 5.62

Freq. of depth 15–30 cm -1.84 Ruffle (No/yes) -3.22

RUN (No/yes) 1.58

For both models, selected habitat variables are reported in order of importance. The probability cutoff to distinguish between absence/presence

and presence/abundance was derived from the Relative Operating Characteristic (ROC) curves, whereas the variable coefficients are multipliers

of the significant habitat attributes
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adult bullhead presence and abundance. RF selected the

variable flow velocity only for presence/abundance mod-

els; in accordance with LR, the velocity range from 0 to

0.15 m/s was identified as significant with a decreasing

trend, while flow velocities from 0.30 to 0.45 m/s had a

positive influence on bullhead abundance. These results,

aligned with the findings of Legalle et al. (2005b) and

Knaepkens et al. (2002), are in contrast with Gosselin et al.

(2010) and Davey et al. (2005) that indicated a preference

for lower values (from 0 to 0.20 m/s): this discrepancy can

be attributed to the fact that Alpine streams have

significantly different morphological features compared to

the two low gradient streams investigated in the cited

studies.

Both LR and RF identified depth range from 0.15 to

0.30 m to have a positive influence on bullhead abundance.

Moreover, RF results highlighted that depths ranging from

0.60 to 0.75 m have a negative effect on the probability of

bullhead presence. Our results are in accordance with

previous studies highlighting depth preferences for values

varying from 0.05 to 0.40 m and in particular with Legalle

et al. (2005a) that identified a clear preference for depths

Fig. 6 Model application in two regulated rivers: Dora Baltea (Nus,

left side) and Evançon (Isollaz, right side). Hydromorphological units

(HMUs) distribution and model predictions are reported showing the

mesohabitat classification into three habitat suitability categories (not

suitable, suitable and optimal habitat)
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ranging from 0.15 to 0.30 m. Also the parameter HMU

gradient, as a surrogate of flow velocity, was selected by

both LR and RF as having a positive influence on bullhead

abundance. Additionally, RF considers it significant also

for bullhead presence, with the highest relevance for values

around 4 % gradient, which may indicate a physical

threshold value. Note that the parameters MESOLITHAL

and MACROLITHAL, which demonstrated to be the most

important variables for bullhead presence, were not selec-

ted in the bullhead abundance model. This can be related to

the limited variability of these substrate proportions in

mesohabitats where bullhead occurred. Moreover, bullhead

were mainly present in mesohabitats characterized by a

gradient ranging from 1 to 6 %, and this finding can

explain the different trends of bullhead probability of

presence and abundance related to the HMU gradient

variable (Fig. 5).

Finally, the obtained regional habitat models (both for RF

and LR) did not capture the influence of site-scale variables

(i.e. channel width, water temperature, reach elevation),

which did not seem to be main important habitat character-

istics in the analyzed data set. Particularly for water

temperature, the exclusion of this variable from the regional

habitat models can be related to the limited range of values

recorded during the fish sampling campaigns (7.1–15.4 °C).

We also evaluated the models application in three reg-

ulated stream reaches to test RF potentials in the

framework of MesoHABSIM. Indeed, the application of

habitat suitability models to altered instream conditions can

quantify habitat availability and can be used for

environmental flow assessments (Vezza et al. 2012a) and

habitat restoration measures (Parasiewicz et al. 2012b).

Although these habitat suitability models make reliable

predictions, the applicability of criteria to regulated

streams needs to be evaluated and the user may verify the

range of conditions over which there is a desire to draw

inference from the model. Indeed, such application domain

may differ from the original training data in a range of

ways and representative test data can be locally required

(Vaughan and Ormerod 2005). A model transferability test

can be performed if (i) the preferred habitat conditions are

available; (ii) the target species abundance and sample

sizes are sufficient; and (iii) the influence of biotic factors

not described by models (such as competition and preda-

tion) preventing animals from using preferred habitats is

limited (Thomas and Bovee 1993; Randin et al. 2006). To

test the reliability of the obtained habitat suitability criteria

across the Alpine area, models’ validation will be investi-

gated in other regions of Northern Italy using the proposed

approach and surveying techniques as a benchmark for

further research studies.

For future applications, it is important to note that RF

does not leave polynomial formulas to apply, as in the case

of LR, and new data need to pass down through the entire

forest to be predicted. Due to this lack of transparency (like

for other machine learning techniques, Olden and Jackson

2002), RF can be seen as a black box (Hooten 2011).

However, the possibility of using partial dependence plots

to investigate the marginal effect of selected variables on

fish probability of presence (or abundance, Fig. 5) can be

seen as a valuable method to both visualize RF results and

to interpret their ecological meaning (Cutler et al. 2007).

The models application to regulated streams demon-

strated a relatively high agreement between the two

statistical techniques (i.e., 77 % with a Cohen’s

kappa = 0.59) in habitat suitability classification. More-

over, model results had similar patterns, being predictions

of habitat suitability also similar in space. Although RF

outperformed LR, the results of this analysis can also

underline the potential of LR in building mesohabitat

suitability models for fish. Looking at the habitat maps

reported in Fig. 6 and the bar-chart coincidence matrix in

Fig. 7, one notes the limited amount of suitable and opti-

mal habitats for bullhead in the analyzed regulated reaches.

This kind of result can be used therefore to define quanti-

tative benchmarks, goals and targets to guide restoration

actions and can contribute to a high potential for designing

and monitoring river restoration projects.

The meso-scale resolution allows one to look at the

riverscapes of Alpine watercourses as a continuous mosaic

of fish habitats, which can be described by a large set of

environmental variables. Mesohabitat suitability models

are therefore well suited as a planning tool in such

Fig. 7 The comparison of Random Forests (RF) and Logistic

Regressions (LR) predictions in three regulated sites displayed by a

bar-chart coincidence matrix. The bar widths refer to the proportions

of the predicted habitat suitability categories (i.e., NS not suitable,

S suitable and O optimal). The overall agreement between LR and RF

was 77 %, with a Cohen’s kappa equal to 0.59
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environments. Specifically, they can be used for selecting

ecologically effective restoration measures and for estab-

lishing ecological flow criteria at hydropower or water

withdrawals (Vezza et al. 2013). The meso-scale approach

demonstrated its particular potential in modelling habitat

for fish in Alpine streams and the presented statistical

techniques can be considered promising tools for stream

ecology management in Northern Italy.
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